
GO/NO GO

 
Co

m
p

u
ter 

 
AUGUST 2019 

G
O

/N
O

 G
O

 
Volum

e 52  Num
ber 8

08.19

vol. 52   no. 8 www.computer.org/computer

CS Election 
Candidates 77
IEEE President-Elect
Q&A 93



SECTION TITLE

54 C O M P U T E R P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

CYBERTRUST

Machine learning (ML) appears to have made 
impressive progress on many tasks, including 
image classification, machine translation, 
autonomous vehicle control, and playing 

complex games, such as chess, Go, and Atari video games. 

This has led to much breathless pop-
ular-press coverage of artificial intel-
ligence and elevated deep learning 
to an almost magical status in the 
eyes of the public. ML, especially of 
the deep-learning sort, is not magic, 
however. It is simply sophisticated 
associative-learning technology 
based on algorithms developed over 
the past 30 years. In fact, much of the 
recent progress in the field can be 
attributed to faster CPUs and much 
larger data sets rather than to any 
particular scientific breakthrough.1

ML has become so popular that its 
application, although often poorly 
understood and partially motivated 

by hype, is exploding. In our view, this is not necessarily a 
good thing. We are concerned with the systematic risk in-
voked by adopting ML in a haphazard fashion. Our research 
is focused on understanding and categorizing security-en-
gineering risks introduced by ML at the design level.

While the idea of addressing the security risk in ML is 
not a new one, most previous work has focused on either 
particular attacks against running ML systems (a kind of 
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dynamic analysis) or on operational 
security issues surrounding ML. Just 
for the record, we encourage these 
lines of inquiry.

Ou r resea rch foc uses on t h ree 
threads: building a taxonomy of known 
attacks on ML, exploring a hypothesis 
of representation and ML risk, and per-
forming an architectural risk analysis 
(sometimes called a threat model) of 
ML systems in general. We report our 
progress here.

A TAXONOMY OF 
ML ATTACKS
Attack taxonomies in security have a 
long history.2 One of the motivations 
behind building such a taxonomy is 
to guide engineering tradeoffs made 
at the design level using real-world 
data about how fielded systems are at-
tacked. For that reason, we are build-
ing a taxonomy of ML attacks.

In practice, fielded ML systems as tar-
gets run the gamut from white box, which 
are fully open source and trained on pub-
lic data, to black box, which map inputs to 
outputs via an application programming 
interface to an unknown transformation 
function. Between the two extremes lie 
many other possibilities including ML 
systems based on an open-source model 
with proprietary hyperparameters and 
training data and a black-box model that 
leverages transfer learning from an exist-
ing white-box model.3

Attacks on ML systems can be di-
vided into two types: manipulation at-
tacks, which alter system behavior by 
tweaking input, training data, or the 
model itself, and extraction attacks, 
which surreptitiously discern secret 
information in the ML system. Addi-
tionally, attacks can be classified by 
which part of the system they target 
(input, training data, and model). This 
results in a taxonomy of six categories 
as shown in Table 1.

Input-manipulation attacks (also 
known as adversarial examples and 

evasion attacks) are by far the most 
common kind of ML attack discussed 
in the literature. The attacker creates 
an input to an operating ML system 
that reliably produces a different out-
put than its creators intend. Successful 
attacks include stop-sign misclassi-
fication, spam misidentification, and 
broken language processing.4

Training-data manipulation attacks 
(also known as poisoning and causative 
attacks) are attacks on an operating 
model via the training process. The at-
tacker modifies the data corpus used 
to train ML systems, with the intent of 
impairing or influencing future system 
behavior. For example, an attacker may 
publish bogus data to interfere with 
medical diagnoses or influence financial 
time-series forecasting models.5 In the 
infamous case of Microsoft Research’s 
Tay, Internet trolls successfully imple-
mented a data-manipulation attack to 
turn the chatbot into a bigot.

There are few examples of mod-
el-manipulation attacks in the liter-
ature. However, one can imagine an 
attacker publishing a white-box model 
with certain latent behavior that is 
meant to be unwittingly adopted by 
third parties and later exploited by the 
attacker. Given the increasing adoption 
of transfer learning and the fact that 
releasing code, and even model param-
eters, under a permissive open-source 
license is common in ML, we believe 
this attack category deserves attention.

Input-extraction attacks (also known 
as model inversion) apply in cases where 
model output is public but inputs are 
supposed to remain secret. In this case, 
an attacker, given outputs, attempts to 
recover inputs. Attacks include inferring 
features of medical records from the dos-
age recommended by an ML model and 
producing a recognizable image of a face 
given only the classification and confi-
dence score in a face-recognition model.6

Training-data extraction attacks 
(also called model inversion) involve 

extracting details of the data corpus 
that an ML model was trained on.7 ML 
research focuses much of its attention 
on the learning model to the exclu-
sion of attention on data, yet data are 
clearly known to be crucially import-
ant to a trained system’s behavior. 
 Real-world ML systems often incor-
porate proprietary data and data with 
serious privacy implications.

Model-extraction attacks target 
any less-than-fully white-box ML sys-
tem and attempt to open the box and 
copy the target’s behavior or parame-
ters. Examples include theft of a pro-
prietary model and enabling white-
box attacks on what was designed to 
be a black-box model.8

Work on this taxonomy is ongoing. 
(In the interest of space, we have not in-
cluded as many references as we would 
like in this section. See Berryville Insti-
tute of Machine Learning for more in-
formation: https://berryvilleiml.com
/references/.)

A WORKING HYPOTHESIS 
ON REPRESENTATION
Our work is informed by a hypothesis 
about representation in ML systems 
that we are actively exploring. Control 
over input, output, and hidden repre-
sentations is essential to understand-
ing the attacks we described in the pre-
ceding section.

ML systems are conventionally 
evaluated on a held-out test set drawn 
from the same distribution as the 
training data. This prevents overfit-
ting to specific examples in the train-
ing data but guarantees nothing about 

TABLE 1. The six attack categories.

Input manipulation Input extraction

Training data 
manipulation

Training data 
extraction

Model manipulation Model extraction
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generalization to a different data distri-
bution in production. Input-manipula-
tion attacks exploit precisely this weak-
ness by targeting a region of input space 
in which system behavior is not under-
stood. Similarly, data-manipulation at-
tacks mold the training distribution to 
an attacker’s intent. In an adversarial 
setting, we must understand ML rep-
resentations over the entire potential 
input space, not just the training-data 
distribution. Representations that are 
unstable and corruptible can be eas-
ily (and often undetectably) tampered 
with. Improved representation strat-
egies can lead directly to more secure 
ML systems. 

Better representation approaches 
may also lead to more robust operation 
in challenging contexts well beyond 
avoiding adversarial dynamic activity. 
System robustness in the face of both 
limited and very noisy data can protect 
against catastrophic failure, especially 
when ML systems are applied to situa-
tions that stray beyond their training.

These ideas are not new. In our 
view, basic principles in representa-
tion have been discovered multiple 
times in multiple disciplines and pub-
lished under multiple names. For ex-
ample, in the numerical computation 
and statistical communities, phenom-
ena such as ill-conditioning, collin-
earity, and outliers have long been de-
scribed and are well understood. Their 
detrimental effects on computation 
and estimation are modeled through 
concepts such as condition numbers 
and statistical leverage and mitigated 
through techniques for regularization 
and outlier detection.

Our view is that an overfocus on 
pure learning strategies without regard 
to representational fluidity may be acci-
dentally adding risk to current ML sys-
tems. We would like to take advantage 
of the progress that exists in various ad-
jacent fields to explore representation 
issues that can improve ML systemat-
ically (mostly from a security perspec-
tive). Increased attention to represen-
tation can help in two ways: achieving 
more stable and efficient signal-content 

representations and supporting the 
complementary concern of modeling 
signal typicality.

EXAMPLE: ANOMALY 
DETECTION IN  
TRAINING DATA
Anomaly-detection ideas can be directly 
applied to input data based on some mea-
sure of the data’s typicality during both 
ML training and operations. During 
training, such an approach can protect 
against anomalous input with high 
leverage that may poison the model. 
Anomaly detection in input can also be 
applied during operation to assess the 
typicality of the test input against the 
training data and offer a model-indepen-
dent way of determining whether the  
ML system is likely to perform as ex-
pected. In both cases, anomaly scores 
that describe observed data drift can 
give us an indication of when we’re inter-
polating and when we’re extrapolating.

EXAMPLE: DEFENSIVE INPUT 
TRANSFORMATION
Input transformation can be used to 
defend against some kinds of ML at-
tacks, especially in the input-manipu-
lation category. There is often a great 
deal of extraneous variation (for ex-
ample, nonrelevant variation with re-
spect to the ML system tasks) found in 
the raw input to an ML system. As a re-
sult, the ML system is likely to include 
some of this extraneous information 
in its learned hidden representations. 
In some sense, the bad extra informa-
tion becomes entangled with the good. 

Because of this, the ML system  
can become susceptible to bad-extra- 
information-based attacks. As an ex-
ample, just because an image is slightly 
noisy, an ML recognition system should 
not make a silly categorization error 
(for example, turtle → rifle or stop sign 
→ speed limit sign). Well-known in-
put-manipulation attacks do exactly 
this with low-level noise, relying on en-
tanglement of the noise signal with the 
task-relevant signal in the distributed/
learned representation being built and 
used by the ML system.

This is not a new phenomenon.  
In linear-inversion problems, such 
as image deblurring, a numerically  
rank-deficient, ill-conditioned opera-
tor cannot be inverted in the presence 
of noise without careful consideration 
of the representation implicit in the 
process inversion. Information from 
subspaces associated with small sin-
gular values must be attenuated or dis-
carded altogether. ML systems should 
take advantage of this knowledge.

WILD SPECULATION
Evolved sensory systems found in na-
ture do this kind of attenuation and dis-
carding thing all the time [think of the 
bandwidth limitations in human hear-
ing (hertz) and vision (nanometers), 
for example]. Raw input in biological 
systems is limited in a task-opportunity 
and risk-dependent way. The auditory 
and visual systems of different mam-
mal, bird, and insect species have all 
evolved to reflect niche opportunities 
and risks (and are all divergent from 
each other in numerous ways; band-
width is an easy one to observe). 

In our view, the adaptations dis-
played by these systems are neither 
completely reliant on nor entirely 
gleaned through Hebbian learning but, 
rather, implemented in aspects of the 
anatomy and physiology of various or-
ganisms that were established through 
genomic evolution. As we experiment 
with learning systems, we should use a 
variety of learning algorithms, some of 
which may be able to achieve different 
kinds of search and increase robustness 
by introducing different types of error 
and nonlinearity.

TOWARD A THOROUGH 
ARCHITECTURAL RISK 
ANALYSIS OF ML
We are interested in building security 
into ML systems from a security-en-
gineering perspective. This means 
understanding how ML systems are 
designed for security (including what 
representations they use), teasing out 
possible engineering tradeoffs, and 
making such tradeoffs explicit. We are 



also interested in the impact of includ-
ing an ML system as a component in 
a larger design. Our basic motivating 
question is how do we secure ML sys-
tems proactively while we are design-
ing and building them?

Early work in security and privacy 
in ML has taken an operations-security 
tack focused on securing an existing ML 
system and maintaining its data integ-
rity. For example, Nicolas Papernot uses 
Salzter and Schroeder’s famous security 
principles to provide an operational per-
spective on ML security.8 In our view, this 
article does not go far enough into ML de-
sign to satisfy our goals. A key objective 
of our work is to develop a basic archi-
tectural risk analysis (sometimes called a 
threat model) of a typical ML system.9 Our 
analysis will take into account common 
design flaws, such as those described by 
the IEEE Center for Secure Design.10

S ecuring a modern ML system 
must involve diving into the 
engineering and design of the 

ML system itself. Our work sets out a 
taxonomy of known attacks against 
existing ML systems, describes a hy-
pothesis of representation that may 
help make ML systems more secure, 
and hints toward a more complete ar-
chitectural risk analysis of ML. 
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