
FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

76 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E

Engineering
Security
Vulnerability
Prevention,
Detection, and
Response
Laurie Williams, North Carolina State University

Gary McGraw and Sammy Migues, Synopsys

// This article aims to aid software engineers,

software engineering educators, and security

researchers understand opportunities for

education and research through an analysis

of current software security practices. //

A PREPONDERANCE OF the
software engineering development
practices used by teams over the
past 50 years guide the delivery of
high-quality functionality to en-
able users, actors, and stakeholders
to do what they want to do with a

software system. Around the turn
of the 21st century, practices began
to emerge to guide teams toward en-
gineering software to stop attackers
and users from utilizing unintended
functionality by violating the sys-
tem designer’s assumptions to cause

a security breach.1–4 Yet, breaches
are reported daily in the news in
all domains—from the casual to
the critical. For example, in 2017
sensitive and personal data from
143 million consumers was ex-
posed in the Equifax breach, and
the WannaCry ransomware attack
crippled medical institutions in the
UK and other organizations around
the world. The attackers will press
on, unceasingly.

It’s up to software engineers and
security researchers to take control
of the situation. We need to build
software that is engineered to thwart
intentional attackers and protect us-
ers from exposing data through their
unintentionally insecure actions. Un-
fortunately, the demand for trained
cybersecurity professionals far ex-
ceeds the supply; the number of un-
filled cybersecurity jobs is predicted
to rise to 1.8 million by 2022.5 Pro-
fessional and university educators
would benefit from understanding
the most important software secu-
rity practices to teach all software
engineering students, particularly
those desiring to focus on cyberse-
curity. Additionally, the need for a
foundational science for cybersecu-
rity has infiltrated security research6
and motivated a focus on the hardest
problems in cybersecurity.7

The goal of this article is to aid
software engineers, software engi-
neering educators, and security re-
searchers understand opportunities
for education and research through
an analysis of the software security
practices currently in use by soft-
ware professionals. The analysis is
conducted on data on the use of a
subset of 113 software security prac-
tices by 109 firms over 42 months, as
reported in the Building Security In
Maturity Model (BSIMM) Version 8
(BSIMM8) study.8

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 77

Software Security
Practice Use
Software engineers use software se-
curity practices to

• prevent the introduction of vul-
nerabilities into a product,

• detect vulnerabilities that have
been injected during develop-
ment, and

• respond to the discovery of vul-
nerabilities in a deployed prod-
uct by attackers and researchers.

These vulnerabilities are generally
classified as implementation bugs
and design flaws, which are con-
sidered to appear in equal propor-
tions.3 Implementation bugs are
implementation-level problems that
can be more easily discovered and
remedied, such as buffer overflow
or SQL injection. Bugs may exist
in code but never be executed, and
therefore remain dormant.3 Design
flaws are deeper and represent a sys-
temic problem in the product that
can be corrected only with redesign.
For example, a number of classic
flaws exist in error-handling and re-
covery systems that fail in an inse-
cure or inefficient fashion.9

In the next three subsections, we
discuss 55 software practices that are
used to prevent, detect, and respond
to both implementation bugs and de-
sign flaws. We utilize data obtained
via the BSIMM8 study. The BSIMM
is a multiyear empirical study of the
current state of software security
initiatives in industry. The BSIMM
assessments are conducted through
in-person interviews by software se-
curity professionals at Cigital (now
Synopsys) with security leaders at
a firm. Via the interviews, the firm
obtains a scorecard on which of
the 113 software security practices
the firm uses. The 113 practices were

enumerated by Cigital professionals
on the basis of the practices they had
observed in their work with compa-
nies. The 58 practices not related to
prevention, detection, and response
deal with governance, intelligence,
and deployment.

After the firm completes the in-
terviews, they are provided infor-
mation comparing themselves with
the other organizations that have
been assessed. BSIMM assessments
have been conducted since 2008
(BSIMM1 to BSIMM8). In the
BSIMM8 report in 2017, all mea-
surements older than 42 months
were excluded to ensure the rele-
vance of the data, bringing the dis-
tinct measurements to 109 firms.

Vulnerability Prevention
The best case is when the develop-
ment team is able to prevent the
injection of vulnerabilities. A vul-
nerability that is never injected never
needs to be discovered, mitigated, or
responded to.

Table 1 shows the percentage of
the 109 firms that use the 30 soft-
ware security practices that can be
used to prevent the injection of vul-
nerabilities. Two practices are used
to prevent the injection of imple-
mentation bugs. These two prac-
tices are used, on average, by 18%
of the firms. Twenty-eight practices
are used to prevent the injection of
design flaws. These practices are
used, on average, 28% of the time.
Overall, the 30 practices are used
27% of the time, with more firms us-
ing design flaw prevention practices
than implementation bug prevention
practices.

As observed in Table 1, only
seven practices are used by more
than half of the firms. The more-
used practices that appear at the top
of the table often deal with policies

and regulations. The least-used prac-
tices that appear at the bottom of the
table often deal with the develop-
ment of patterns and “top-N” lists.
These results indicate that organi-
zations may be motivated more by
compliance than by systemic eradi-
cation of vulnerability types.

The software security group (SSG)
in an organization can play a key role
in preventing design flaws. The SSG
is the internal group charged with
carrying out and facilitating soft-
ware security for the organization.
The results in Table 1 indicate the
firms could better use their SSG for
vulnerability prevention.

Vulnerability Detection
Vulnerability detection practices are
used to find implementation bugs
and design flaws in a product prior
to its deployment to a customer. De-
tecting vulnerabilities is less desir-
able than preventing them, but better
than deploying the product with vul-
nerabilities. Detection is more reac-
tive; prevention is more proactive.

As shown in Table 2, the 10 im-
plementation bug practices are used,
on average, by 42% of the firms. The
11 design flaw detection practices
are used, on average, by 30% of the
firms, indicating that more resources
are focused on detecting the smaller
implementation bugs. Overall, the
16 detection practices are used 36%
of the time, on average, compared
with the prevention practices, which
are used 26% of the time. These re-
sults indicate that firms tend to be
more reactive than proactive when
dealing with vulnerabilities.

Highly used detection practices
include the use of external (87%) and
internal (62%) penetration testers to
find problems. While penetration
testing is a highly effective practice,
the software product is late in the

78 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

development process when this test-
ing is done. Conversely, code review
can be done earlier in the process but
has a lower usage rate at 31%.

Fuzzing tools and automated
static-analysis tools are available to
detect implementation bugs. Soft-
ware teams would be well served by
automation tools to detect design
flaws. Few firms indicated the use of
automation in detecting vulnerabili-
ties. Security researchers can con-
sider the low usage of automation
an opportunity. Software develop-
ment teams would be well served by
accurate automation tools that can
fit into their current workflow with-
out excessive disruption.

Vulnerability Response
Six software security practices are
used to detect a breach or to respond
to the detection of vulnerabilities
once the product is deployed. As
shown in Table 3, these six practices
are used, on average, by 48% of the
firms. The three practices used most
often deal with emergency responses
and bug fixing. The lowest-used
practices are focused on proactive
actions, such as fixing all occur-
rences of bugs. The lack of use of ap-
plication behavior monitoring can be
a signal for the need for research in
effective behavior-monitoring tools.

Recommendations
Increasingly, security breaches occur—
from nation-state actions, to the dis-
ruption of federal elections, to the re-
lease of millions of personal records,
to hackers talking to babies through
Internet-connected baby monitors.
Software security practices for build-
ing secure products have emerged
only in the last 20 years of the 50-year
life of software engineering.

The 10 years of data obtained
in the BSIMM1 through BSIMM8

Table 1. Vulnerability prevention practices.

Problem Practice Usage (%)

Bugs (2) Use a top-N bugs list (real data preferred). 21

Use secure coding standards. 14

Average (bugs) 18

Flaws (28) Build and publish security features. 78

Translate compliance constraints to requirements. 65

Engage a software security group (SSG) with architecture. 64

Create a data classification scheme and inventory. 62

Unify regulatory pressures. 61

Create security standards. 61

Create (security) policy. 51

Gather and use attack intelligence. 46

Create an SSG capability to solve difficult design problems. 38

Identify potential attackers. 33

Implement and track controls for compliance. 32

Use application containers. 27

Identify a personally-identifiable-information data inventory. 25

Create standards for technology stacks. 23

Identify open source in apps. 23

Define and use an architectural-analysis process. 13

Build and maintain a top-N possible attacks list. 13

Standardize architectural descriptions (including dataflow). 11

Require use of approved security features and frameworks. 10

Build attack patterns and abuse cases tied to potential attackers. 8

Create technology-specific attack patterns. 7

Build a capacity for eradicating specific bugs from the entire code base. 5

Form a review board to approve and maintain secure design patterns. 5

Have a science team that develops new attack methods. 4

Make the SSG available as an architectural-analysis resource or mentor. 2

Have software architects lead design review efforts. 2

Find and publish mature design patterns from the organization. 2

Drive analysis results into standard architecture patterns. 0

Average (flaws) 28

Average usage of all 30 practices 27

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 79

studies have shown that organiza-
tions are increasingly adopting soft-
ware security practices. However,
the BSIMM data indicated that firms
most often adopt response practices,
followed by the use of detection
practices, followed by prevention
practices. Software development or-
ganizations have no choice but to re-
spond to a breach once the product
is deployed, but the damage has been
done. Organizations could benefit
from a more proactive approach to
building secure products through
continued growth in the use of the
prevention and detection software
security practices.

Software engineers and security
researchers must continue to rise
to protect society from the attack-
ers. Engineers should explicitly con-
sider the bad actors for their systems
and what these actors want to do,
such that the system can stop them
in their tracks using practices such
as abuse cases and threat models.
Engineers should also consider the
unintentional mistakes that users can
make, such as clicking on suspicious
links, and design systems to protect
the user from his or her own actions.

Over the past 10 years, research
conferences have shown a growth in
work at the intersection of security
and software engineering. Through
scientific security research programs,
security researchers are making
explicit the principles that underlie
attackers’ actions and that underlie
fundamentally secure systems. The
BSIMM data indicates that research-
ers should continue to develop tools
to enable development teams to effi-
ciently prevent and detect implemen-
tation bugs and design flaws.

Providing tools to aid in software
security is not enough.10 Students
and practitioners need to be trained.
Educators of software engineers

should ensure that students learn
the importance of and the practices
for designing and developing secure
systems.

Thwarting the attackers goes
beyond the software engineering

practices discussed in this article. In-
deed, the BSIMM contains 58 other
practices related to governance; or-
ganizing, managing, and measur-
ing a software security initiative;
staff development and training; and

Table 2. Vulnerability detection practices.*

Problem Practice Usage (%)

Bugs (10) Use external penetration testers to find problems. 87

Ensure that quality assurance (QA) supports edge or boundary value
condition testing.

80

Have the SSG perform an ad hoc review. 63

Use penetration testing tools internally. 62

Use automated tools along with a manual review. 60

Make code review mandatory for all projects. 31

Integrate black-box security tools into the QA process. 23

Perform fuzz testing customized to application APIs. 9

Include security tests in QA automation. 8

Create and use automation to do what attackers will do. 1

Average for bugs 42

Flaws (11) Use external penetration testers to find problems. 87

Perform a security feature review. 83

Use penetration testing tools internally. 62

Perform a design review for high-risk applications. 28

Integrate black-box security tools into the QA process. 23

Have the SSG lead design review efforts. 22

Use automated tools with tailored rules. 15

Include security tests in QA automation. 8

Build a factory. (Multiple analysis techniques feed into one reporting
or remediation process.)

3

Automate malicious-code detection. 3

Create and use automation to do what attackers will do. 1

Average for flaws 30

Average use of all 16 practices (duplicate practices removed) 36

* Italics indicate practices that appear for both bugs and flaws.

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

the collection of corporate knowl-
edge used in carrying out software
security activities throughout the

organization. Management and prod-
uct owners must evaluate and see the
value in developing secure products.

W e all play a role in se-
curing our world.

References
 1. M. Howard and D. LeBlanc, Writing

Secure Code, Microsoft Press,

2001.

 2. M. Howard and S. Lipner, The Secu-

rity Development Lifecycle, Micro-

soft Press, 2006.

 3. G. McGraw, Software Security:

Building Security In, Addison-

Wesley, 2006.

 4. J. Viega and G. McGraw, Build-

ing Secure Software: How to Avoid

Security Problems the Right Way,

Addison-Wesley, 2001.

 5. D. Kawamoto, “Cybersecurity Faces

1.8 Million Worker Shortfall by

2022,” Dark Reading, 7 June 2017;

https://www.darkreading.com

/careers-and-people/cybersecurity

-faces-18-million-worker-shortfall

-by-2022/d/d-id/1329084.

 6. D. Evans and S. Stolfo, “The Science

of Security,” IEEE Security and Pri-

vacy, vol. 9, no. 3, 2011, pp. 16–17.

 7. D. Nicol et al., “Science of Security

Hard Problems: A Lablet Perspec-

tive,” 27 Nov. 2012; https://cps-vo

.org/node/6394.

 8. G. McGraw, S. Migues, and J. West,

Building Security in Maturity Model

(BSIMM) Version 8, 2017; https://

www.bsimm.com.

 9. I. Arce et al., Avoiding the Top 10

Software Security Design Flaws,

IEEE Center for Secure Design,

2014; https://www.computer.org

/cms/CYBSI/docs/Top-10-Flaws

.pdf.

 10. J. Witschey et al., “Quantifying

Developers’ Adoption of Security

Tools,” Proc. 10th Joint Meeting

Foundations of Software Eng.

(FSE 15) 2015, pp. 260–271.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

LAURIE WILLIAMS is the interim department head and a pro-

fessor of computer science at North Carolina State University.

She’s also the codirector of a US National Security Agency–

sponsored Science of Security lablet. Her research focuses on

software security; agile software development practices and

processes, particularly continuous deployment; and software

reliability, software testing, and analysis. Williams received a

PhD in computer science from the University of Utah. She’s an

IEEE Fellow. Contact her at laurie_williams@ncsu.edu.

GARY McGRAW is the Vice President Security Technology at

Synopsys. He also produces the monthly Silver Bullet Security

Podcast for Synopsys and IEEE Security & Privacy. McGraw

received a dual PhD in cognitive science and computer science

from Indiana University. Contact him at gem@synopsys.com.

SAMMY MIGUES is the principal scientist at Synopsys. He cur-

rently focuses on management consulting that helps executives

build holistic and realistic security programs. Migues received a

master’s in information security from Eastern Michigan University.

Contact him at sammy.migues@gmail.com.

Table 3. Vulnerability response practices.

Practice Usage (%)

Create or interface with incident response. 84

Track software bugs found in operations through the fix process. 76

Have an emergency code base response. 72

Use application input monitoring. 45

Use application behavior monitoring and diagnostics. 4

Fix all occurrences of software bugs found in operations. 4

Average 48

