
: : :

As interest in software security increases, savvy
security organizations are determining how to in-

tegrate security into the way they build software. How-
ever, the reality of software development in many or-
ganizations is complex. Sometimes development is part
of the traditional IT organization, but more often soft-
ware development teams report to individual business
units. Sometimes a standard Software Development
Lifecycle (SDLC) is used, but more often each develop-
ment team has its own way of building software. In al-
most every case, a particular software process is de-
fended with religious zeal. All these factors make
integrating security into software development an inter-
esting challenge.

Fortunately, we can dispense with the SDLC religious
war by focusing on the artifacts created during any given
SDLC. Every SDLC is guaranteed to create at least one
artifact: code. Other possible artifacts include require-

ments and use cases, design documents,
architecture documents, test plans, tests,

and test results. Given a set of standard
artifacts, we can carry out a number of
inline “microprocesses”—that is, touch
points or best practices—regardless of
the core SDLC. That way, developers can
keep building software the way they like
and still meet security goals.

SECURITY TOUCH POINTS
Security should begin at the requirements level. Secu-
rity requirements must cover both overt functional se-
curity (say, the use of applied cryptography) and emer-
gent characteristics. One way to cover the emergent
security space is to build abuse cases. Similar to use
cases, abuse cases describe a system’s behavior under
attack, providing explicit coverage of what should be
protected, from whom, and for how long.

At the architecture level, a system must be coherent
and present a unified security architecture that takes
into account security principles (such as the principle
of least privilege). Designers, architects, and analysts
must document assumptions and identify possible at-

tacks. Architectural risk analysis, in which analysts un-
cover and rank risks, is necessary before mitigation can
begin. External analysis outside the design team is often
also required.

At the code level, the focus should be on implementa-
tion flaws, especially those discovered by static analysis
tools such as Fortify Software’s Source Code Analysis.

Security testing must encompass two strategies: test-
ing security functionality with standard functional test-
ing techniques, and testing risk-based security based on
attack patterns and threat models.

Penetration testing is also useful, especially when it’s
driven by architectural risk analysis. Note that black-box
penetration testing that doesn’t take the software archi-
tecture into account won’t uncover anything interesting
about software risk. Software that falls prey to canned
black-box testing is bad, and merely passing a cursory
penetration test reveals little about security readiness.

Because attacks will happen, monitoring software
behavior is an excellent defensive technique for opera-

tions people to adopt. Knowledge gained by under-
standing attacks and exploits should be cycled back
into the development organization.

Risks crop up during all stages of the SDLC, so a con-
stant risk analysis thread with recurring risk tracking
and monitoring activities is highly recommended.

Practitioners are increasingly adopting and evolving a
set of best practices to address software security. Most
approaches encompass analysis and auditing of software
artifacts, security engineering, and training for develop-
ers, testers, and architects. There’s no substitute for
working software security as deeply into the develop-
ment process as possible and taking advantage of the en-
gineering lessons software practitioners have learned
over the years. Ultimately, the most prudent approach is
a process-agnostic one that uses software artifacts as
touch points for designing security into the architecture.

How Does Security Fit With Engineering? : : :

www.networkmagazine.com I 05.05 I NETWORK MAGAZINE 1

[in]security
by Gary McGraw

There’s no substitute for working software security as
deeply into the development process as possible.

G a r y M c G r a w i s C T O o f C i g i t a l , a s o f t w a r e q u a l i t y

m a n a g e m e n t c o n s u l t a n c y . H e i s c o - a u t h o r o f

E x p l o i t i n g S o f t w a r e (A d d i s o n - W e s l e y , 2 0 0 4) , B u i l d i n g

S e c u r e S o f t w a r e (A d d i s o n - W e s l e y , 2 0 0 1) , a n d J a v a

S e c u r i t y (W i l e y , 1 9 9 6) . R e a c h h i m a t g e m @ c i g i t a l . c o m .

