[in]security

by Gary McGraw

Innovative Rootkits: The Ultimate Weapon? : : :

. An attacker’s job isn’t complete until he or she

can return to a compromised computer and use it
at will—all while remaining deep in the shadows. To
achieve this, attackers install rootkits on target systems.
Malicious hackers call this “owning” your machine.
While these nefarious tools have always been a prob-
lem, today’s rootkits are becoming more sophisticated,
harder to discover, and more difficult to remove. Here’s
what you need to know about them.

KNOW YOUR ROOTS

Rootkits occupy the pinnacle of the attacker’s formida-
ble tool set because they yield ultimate control over a
target machine. They can be installed locally, or they
can arrive via some other vector, such as a worm. In
fact, virus code, worms, and rootkits have many things
in common. They’re all typically very small pieces of
code that’s extremely tightly written. They all employ
stealth techniques, and they
often use tricks such as call
hooks, trampoline tables, and
patches to obtain their goals.

Because worms are really a cat-
egory of mobile code, worm
payload often uses many of
these tricks to infect a target
system. A worm usually infects

a target and leaves code be-
hind, in effect becoming a rootkit.

Early rootkits involved making subtle changes to
standard executables on a system. A classic Unix rootkit
from the 1980s involved installing a compromised ver-
sion of the directory utility 1s, a much-used command
to list the contents of a directory. An attacker could re-
turn to a system and gain privilege by passing in the
proper secret arguments and executing the backdoor
planted in Is. Other commonly accessed executable
files, such as ps and netstat, were also targeted.

Because this technique involved changing the size
and makeup of target executables, early rootkits could be
detected by file integrity-checking software such as Trip-
wire, but many of these defenses no longer work today.

2 NETWORK MAGAZINE | 01.05 | www.networkmagazine.com

INTO AND UNDER THE KERNEL

Today’s more sophisticated rootkits are harder to detect.
Kernel rootkits, widely available on the Internet (see
http://rootkit.com), are installed as loadable modules or
device drivers and provide hardware-level access to a ma-
chine. Because these programs are fully trusted by the
kernel, they can hide from any other software running on
the machine. For example, when an application asks the
kernel to list all running processes, a rootkit can make
sure its processes are never revealed by scrubbing the list
on its way back to the calling application. Kernel rootkits
commonly hide both files and running processes to pro-
vide an undetectable backdoor into the owned machine.

This means aside from running your own rootkit that
installs itself first, there’s no way for you to tell if your
machine has been victimized. More reactive ap-
proaches, such as monitoring your network for strange
behavior and looking for weird ports being opened, can
help, but these aren’t a complete solution. OSs that sign
kernel code and check kernel integrity are promising,
but not yet standard issue.

Particularly nasty rootkits have even been known to

dfd Particularly nasty rootkits are able to ensconce
themselves in the very chips of a computer. |

ensconce themselves in the very chips of a computer.
Consider that many modern PCs have around 2Mbytes
of unused EEPROM space on the motherboard that can
be accessed through software. If you're owned by one of
these rootkits, even completely reinstalling the OS
won’t clear things up. Short of reflashing your EEP-
ROM, you're fresh out of options.

One potential solution is to employ compartmental-
ized hardware. However, the delayed attempt to com-
mercialize hardware security apparatuses in the form of
Intel’s LaGrange, Microsoft’s Palladium/NGSC, and
other systems shows how far we have to go to defeat the
most sophisticated rootkits. Without specialized hard-
ware as a defense, today’s killer rootkits may be the ulti-
mate weapon.

» Gary McGraw is CTO of Cigital, a software quality
management consultancy. He is co-author of
Exploiting Software (Addison-Wesley, 2004), Building
Secure Software (Addison-Wesley, 2001), and Java
Security (Wiley, 1996). Reach him at geme@cigital.com.

