
Most of the people attacking our computer sys-
tems today are software people. While script kid-

dies are part of the problem, the real threat comes from
those who use hard-core software tools to take apart
programs, write malicious code, and create the attacks
that exploit our software.

In this column, we’ll focus our attention on attack
tools that require a copy of the target software. We’re
not really limiting ourselves by this constraint, how-
ever. Today, we have copies of all kinds of targets that
can be exploited, from the OS running on our laptops
(the binaries are all there) to the ubiquitous Web server
software that can be downloaded for free. Real attackers
usually get a copy of their target into the lab, where
they wield various surgical tools to dissect it.

Attackers have a well-developed toolkit, with com-
ponents that run the gamut from standard analysis and
testing tools to rootkits and payload collections with no

other legitimate use. (We’ll look
at rootkits and payload collec-
tions in another column.)

The first and most important

category of these tools work
against binary executables.
Both decompilers and disas-
semblers allow humans to un-
derstand and analyze target bi-
nary code. This means that

despite the occasional “big security story” about source
code finding its way onto the Internet, source code isn’t
required for software exploit. Though source code makes
an attacker’s job easier, it’s in no way a necessity. Most
attackers use disassemblers and decompilers in concert
with other tools to test inputs to the target. They then
watch what happens and take things apart as necessary.

Debuggers also make excellent tools for understand-
ing how programs work. The most common debuggers
used by attackers are the kernel-level variety, which in-
tercepts all the calls a target program makes to and from
the OS. These debuggers allow a program to be meticu-
lously observed, stopped, rewound, started, changed,
and so on—all in real time.

Getting in between components of a target program is
also a useful technique. API interposition tools let an at-
tacker intercept, record, play back, and change messages
sent inside a program as it runs. Similarly, dependency
analysis tools provide information about what external
functions, utilities, and libraries a program needs to work.

Coverage tools, often used by quality assurance peo-
ple to look at testing effectiveness, double as attack
tools. Knowing what parts of a target program are exe-
cuted under what conditions can help an attacker hone
in on a vulnerability. Other dynamic analysis tools that
can be turned to evil ends include control flow and data
flow analyzers. These tools all improve understanding
about how a program works, what kinds of data it
processes, and how the moving parts work together.

Because attackers often want to work at a distance,
vulnerabilities that are discovered using such tools are
usually scripted into attacks that can be used remotely.
Fault injection engines and input generators (called
“fuzzers”) are very useful when probing the target’s
input space. Once a vulnerability deep in the system is
discovered, the next trick is getting to it through input.

Sometimes problems can be discovered accidentally by
sending in random input, but tailoring input according
to knowledge of the software’s guts is always better.

As mentioned earlier, most of the people attacking our
computer systems today are software people. Unfortu-
nately, most of the people defending them aren’t. In terms
of the operator vs. builder problem raised previously in
this column, it seems that the bad guys have better capi-
talized on software knowledge than the good guys.

But it doesn’t have to be this way. Every single one
of these tools can be used by the good guys just as effec-
tively as they’re now used by the bad guys. By learning
how these tools work and what to make of their output,
security professionals can better understand and
counter security attacks.

[in]security

How Do Real Bad Guys Break Software?

It seems that the bad guys have better capitalized
on software knowledge than the good guys.

2 NETWORK MAGAZINE I 12.04 I www.networkmagazine.com

by Gary McGraw

G a r y M c G r a w i s C T O o f C i g i t a l , a s o f t w a r e q u a l i t y
m a n a g e m e n t c o n s u l t i n g p r o v i d e r . H e i s c o - a u t h o r o f
E x p l o i t i n g S o f t w a r e (A d d i s o n - W e s l e y , 2 0 0 4) , B u i l d i n g
S e c u r e S o f t w a r e (A d d i s o n - W e s l e y , 2 0 0 1) , a n d J a v a
S e c u r i t y (W i l e y , 1 9 9 6) . R e a c h h i m a t g e m @ c i g i t a l . c o m .

: : :

