[in]security

by Gary McGraw

Application Security Testing Tools: Worth the Money?

. Application security testing tools are being sold
as a solution to the problem of insecure soft-
ware. However, these solutions aren’t all they’re
cracked up to be. They may help us diagnose, describe,
and demonstrate security problems, but they do little
to help us fix them.

Today’s application security testing tools treat
software applications as “black boxes,” prone to mis-
behavior and in need of probing and prodding to pre-
vent security disaster. Unfortunately, this approach is
too simple.

Software testing requires planning. It should be based
on software requirements and the architecture of the
code under test. You can’t “test quality in” by painstak-
ingly finding and removing bugs once the code is fin-
ished.

The same goes for security: Running a handful of
canned tests that simulate mali-
cious hackers by sending mal-
formed input streams to a pro-
gram won't work. Real attackers
don’t simply “fuzz” a program

with input to find problems.
They take software apart, deter-
mine how it works, then make
it misbehave by doing what
users aren’t supposed to do.
Black box tests only scratch the surface of software, in-
stead of digging into its guts to secure things from the in-
side.

BADNESS-OMETERS

While most architecture and coding vulnerabilities are
beyond the reach of simple canned tests, these tools can
tell you something about security—namely, that you're
in very deep trouble. That is, if your software fails any
of the canned tests, you have some serious security
work to do. Even if the software passes all the tests with
flying colors, you know nothing more than that it
passed a handful of tests with flying colors.

Put in more basic terms, application security testing
tools are “badness-ometers.” They provide a reading

72 NETWORK MAGAZINE | 11.04 | www.networkmagazine.com

in a range from “deep trouble” to “who knows?” but
they don’t provide a reading up into the “security”
range at all.

BEYOND PORT 80

The other major weakness with application security
testing tools is that they focus on input to an applica-
tion over port 80. Understanding and testing a complex
program by relying only on the protocol it uses to com-
municate provides a shallow analysis. Though many at-
tacks do arrive via HTTP, this is only one route of entry.
Input arrives to modern applications in many forms:
Consider SSL, environmental variables, outside li-
braries, distributed components that communicate
using other protocols, and so on. Beyond program
input, software security must also consider architec-
tural soundness, data security, access control, software
environment, and any number of other aspects, all of
which depend on the application itself.

In short, there’s no set of prefabricated tests that will
probe every possible application in a meaningful way.
In fact, the only good use for application security tools

did There’s no set of prefabricated tests that will probe
every possible application in a meaningful way. /|

is testing off-the-shelf commercial software, where sim-
ple dynamic checks set a reasonable low bar to hold
vendors to. If the software fails to pass those tests, you
can either reject it or attempt to manage the risks associ-
ated with the security flaws.

In the final analysis, application security testing
tools provide only a modicum of value. Organizations
that are just beginning to think through software secu-
rity issues can use them as badness-ometers to help de-
termine how much trouble they’re in. Results can alert
all the interested parties to the presence of a problem
and spur mitigation efforts, but you won’t get anything
more than a rudimentary analysis with these tools.
Your money will be better spent on building better soft-
ware to begin with.

» Gary McGraw is CTO of Cigital, a software quality
management consulting provider. He is co-author of
Exploiting Software (Addison-Wesley, 2004), Building
Secure Software (Addison-Wesley, 2001), and Java
Security (Wiley, 1996). Reach him at geme@cigital.com.

