
focus

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 33

trends that are making malicious code an
increasingly serious problem. We then sur-
vey existing techniques for preventing at-
tacks, pointing out their limitations, and
discuss some promising new approaches
that might address these limitations.

This report is a byproduct of two meetings
of Study Group members and their invited
guests. Although this report was written by
two of the study group members, we believe
it represents an accurate distillation of the
ideas and insights of all the participants.

What is Malicious Code?
Malicious code is any code added,

changed, or removed from a software sys-
tem to intentionally cause harm or subvert

the system’s intended function. Although
the problem of malicious code has a long
history, a number of recent, widely publi-
cized attacks and certain economic trends
suggest that malicious code is rapidly be-
coming a critical problem for industry, gov-
ernment, and individuals.

Traditional examples of malicious code
include viruses, worms, Trojan Horses, and
attack scripts, while more modern examples
include Java attack applets and dangerous
ActiveX controls:

� Viruses are pieces of malicious code that
attach to host programs and propagate
when an infected program executes.

� Worms are particular to networked

Attacking Malicious Code:

A Report to the
Infosec Research
Council

Gary McGraw, Cigital

Greg Morrisett, Cornell University

The accelerating
trends of inter-
connectedness,

complexity, and
extensibility are
aggravating the
already-serious
threat posed by
malicious code.

To combat
malicious code,

these authors
argue for creating

sound policy
about software be-
havior and enforc-

ing that policy
through technolog-

ical means.

I
n October of 1999, the Infosec Research Council created a Science
and Technology Study Group focused on malicious code. The Mali-
cious Code ISTSG is charged with developing a national research
agenda to address the accelerating threat from malicious code. The

study is intended to identify promising new approaches to dealing with the
problems posed by malicious code. In this report, we discuss important

malicious IT

Extensible
systems,
including

computers, are
particularly

susceptible to
the malicious
functionality

problem.

computers. Instead of attaching them-
selves to a host program, worms carry
out programmed attacks to jump from
machine to machine across the network.

� Trojan Horses, like viruses, hide mali-
cious intent inside a host program that
appears to do something useful (such as
a program that captures passwords by
masquerading as the login daemon).

� Attack scripts are programs written by
experts that exploit security weaknesses,
usually across the network, to carry out
an attack. Attack scripts exploiting buffer
overflows by “smashing the stack” are
the most commonly encountered variety.

� Java attack applets are programs em-
bedded in Web pages that achieve foot-
hold through a Web browser.

� Dangerous ActiveX controls are pro-
gram components that allow a mali-
cious code fragment to control applica-
tions or the operating system.

Recently, the distinctions between mali-
cious code categories have been bleeding to-
gether, making classification difficult. Table 1
provides some concrete examples of malicious
code. Recent versions of malicious code are re-
ally amalgamations of different categories.

A Growing Problem
Complex devices, by their very nature,

introduce the risk that malicious functional-
ity can be added (either during creation or
afterwards) that extends the original device
past its primary intended design. As an un-
fortunate side effect, inherent complexity
lets malicious subsystems remain invisible
to unsuspecting users until it is too late.
Some of the earliest malicious functionality,
for example, was associated with compli-
cated copy machines. Extensible systems,
including computers, are particularly sus-
ceptible to the malicious functionality prob-
lem. When extending a system is as easy as
writing and installing a program, the risk of
intentional introduction of malicious behav-
ior increases drastically.

Any computing system is susceptible to
malicious code. Rogue programmers can
modify systems software that is initially in-
stalled on the machine. Users might unwit-
tingly propagate a virus by installing new
programs or software updates from a
CDROM. In a multi-user system, a hostile

user might install a Trojan Horse to collect
other users’ passwords. These attack vectors
have been well known since the dawn of
computing, so why is malicious code a big-
ger problem now than in the past? We argue
that a small number of trends have a large
influence on the recent widespread propaga-
tion of malicious code.

Networks Are Everywhere
The growing connectivity of computers

through the Internet has increased both the
number of attack vectors and the ease with
which an attack can be made. More and
more computers, ranging from home PCs to
systems that control critical infrastructures
(such as the power grid), are being con-
nected to the Internet. Furthermore, people,
businesses, and governments are increasingly
dependent upon network-enabled communi-
cation such as e-mail or Web pages provided
by information systems. Unfortunately, as
these systems are connected to the Internet,
they become vulnerable to attacks from dis-
tant sources. Put simply, an attacker no
longer needs physical access to a system to
install or propagate malicious code.

Because access through a network does
not require human intervention, launching
automated attacks from the comfort of your
living room is relatively easy. Indeed, the re-
cent denial-of-service attacks in February of
2000 took advantage of a number of (previ-
ously compromised) hosts to flood popular
e-commerce Web sites with bogus requests
automatically. The ubiquity of networking
means that there are more systems to attack,
more attacks, and greater risks from mali-
cious code than in the past.

System Complexity Is Rising
A second trend that has enabled wide-

spread propagation of malicious code is the
size and complexity of modern information
systems. A desktop system running Win-
dows/NT and associated applications de-
pends upon the proper functioning of the
kernel as well as the applications to ensure
that malicious code cannot corrupt the sys-
tem. However, NT itself consists of tens of
millions of lines of code, and applications
are becoming equally, if not more, complex.
When systems become this large, bugs can-
not be avoided. Exacerbating this problem
is the use of unsafe programming languages

3 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

(such as C or C++) that do not protect
against simple kinds of attacks, such as
buffer overflows. However, even if the sys-
tems and applications code were bug free,
improper configuration by retailers, admin-
istrators, or users can open the door to ma-
licious code. In addition to providing more
avenues for attack, complex systems make it
easier to hide or mask malicious code. In
theory, we could analyze and prove that a
small program was free of malicious code,
but this task is impossible for even the sim-
plest desktop systems today, much less the
enterprise-wide systems used by businesses
or governments.

Systems Are Easily Extensible
A third trend enabling malicious code is

the degree to which systems have become ex-
tensible. An extensible host accepts updates
or extensions, sometimes referred to as mo-
bile code, so that the system’s functionality
can be evolved in an incremental fashion. For
example, the plug-in architecture of Web
browsers makes it easy to install viewer ex-
tensions for new document types as needed.
Today’s operating systems support extensibil-
ity through dynamically loadable device driv-
ers and modules. Today’s applications, such
as word processors, e-mail clients, spread-
sheets, and Web browsers, support exten-
sibility through scripting, controls, compo-

nents, and applets. From an economic stand-
point, extensible systems are attractive be-
cause they provide flexible interfaces that can
be adapted through new components. In to-
day’s marketplace, it is crucial that software
be deployed as rapidly as possible to gain
market share. Yet the marketplace also de-
mands that applications provide new features
with each release. An extensible architecture
makes it easy to satisfy both demands by let-
ting companies ship the base application
code early and later ship feature extensions
as needed.

Unfortunately, the very nature of extensi-
ble systems makes it hard to prevent mali-
cious code from slipping in as an unwanted
extension. For example, the Melissa virus
took advantage of the scripting extensions of
Microsoft’s Outlook e-mail client to propa-
gate itself. The virus was coded as a script
contained in what appeared to users as an
innocuous mail message. When users opened
the message, the script executed, proceeded
to obtain email addresses from the user’s
contacts database, and then sent copies of it-
self to those addresses. The infamous Love
Bug worked very similarly, also taking ad-
vantage of Outlook’s scripting capabilities.

Defense against Malicious Code
Creating malicious code is not hard. In

fact, it is as simple as writing a program or

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 35

Table 1
Examples of Malicious Code

Malicious code Date Category Explanation

Love Bug 2000 Mobile code virus The fastest spreading virus of all time used VB script and Microsoft Outlook mail to propagate.
Caused an estimated $10 billion in damage.

Trinoo (and other 2000 Remote-control The highly publicized denial of service attacks of February 2000 were carried out by remotely
dDoS scripts) attack script planted agent programs.
Melissa 1999 Mobile code virus The second fastest spreading virus of all time used e-mail to propagate. Infected over 1.2 million

machines in a few hours.
Explore.Zip 1999 Mobile code worm An e-mail borne worm that exploited problems in Microsoft Windows to propagate.
Happy99 1999 Virus A widespread virus infecting Microsoft PCs.
CIH 1998 Virus A particularly dangerous virus that attacks BIOS in PCs. Ran rampant in Asia before contained.
Back Orifice 1998 Offensive code Remote control program installed on Windows machines by crackers. Pervasive.
Attack scripts Offensive code Crackers called “script kiddies” download malicious code from the Internet and run it against any

number of targets. Some expert must create and release the script to begin with. Widespread.
Most common attack: buffer overflow.

ActiveX (scripting) 1997 Mobile code Decried by security professionals, Microsoft’s ActiveX system introduces grave security risks by
relying on user’s discretion and judgment even though digital signatures are used.

Java Attack 1996-2000 Mobile code Attack applets placed on Web sites take advantage of flaws in the Java security model to carry
Applets out attacks. 19 known attacks.
Morris worm 1988 Worm Released in 1988 by Robert Morris, Jr, this program affected around 6000 computers (around

10% of the Internet at the time).
Thompson’s 1984 Trojan Horse Ken Thompson introduced a Trojan Horse in a C compiler that compiled itself into future
compiler trick programs (“Reflections on Trusting Trust,” Comm. ACM, Vol. 27, No. 8, Aug. 1984).

downloading and configuring a set of easily
customized components. It is becoming in-
creasingly easy to hide ill-intentioned code
inside otherwise innocuous objects, including
Web pages and e-mail messages. This makes
detecting and stopping malicious code before
it can do any damage extremely hard.

To make matters worse, our traditional
tools for ensuring the security and integrity
of hosts have not kept pace with the ever-
changing suite of applications. For example,
traditional security mechanisms for access
control reside within an operating system
kernel and protect relatively primitive ob-
jects (such as files); but increasingly, attacks
such as the Melissa virus happen at the ap-
plication level where the kernel has no op-
portunity to intervene.

A useful analogy is to think of today’s
computer and network security mechanisms
as the walls, moats, and drawbridges of me-
dieval times. At one point, these mechanisms
were effective for defending our computing
castles against isolated attacks, mounted on
horseback. But the defenses have not kept
pace with the attacks. Today, attackers have
access to airplanes and laser-guided bombs
that can easily bypass our antiquated de-
fenses. In fact, attackers rarely need sophis-
ticated equipment: because our kingdoms
are really composed of hundreds of inter-
connected castles, attackers can easily move
from site to site, finding places where we
have left the drawbridge down. It is time to
develop some new defenses.

In general, when a computational agent
arrives at a host, there are four approaches
that the host can take to protect itself:

� Analyze the code and reject it if there is
the potential that executing it will cause
harm.

� Rewrite the code before executing it so
that it can do no harm.

� Monitor the code while its executing
and stop it before it does harm, or

� Audit the code during executing and
take policing action if it did some harm.

Code analysis includes simple techniques,
such as scanning a file and rejecting it if con-
tains any known virus, as well as more so-
phisticated techniques, including dataflow
analysis, which can sometimes discover pre-
viously unseen malicious code. Analysis can

also help locate security-related bugs (such as
potential buffer overflow conditions) that
malicious code can use to gain a foothold in
a system. But analyses are necessarily limited,
because determining if code will misbehave is
as hard as the halting problem. Conse-
quently, any analysis will either be too con-
servative (and reject some perfectly good
code) or too permissive (and let some bad
code in) or more likely, both. Furthermore,
software engineers working on their own sys-
tems often neglect to apply any bug-finding
analyses. Automated tools such as the open
source security scanner ITS4 (see www.rst-
corp.com/its4) and more sophisticated tools
incorporating dataflow analysis can be effec-
tive for finding bugs.1,2 In addition, primitive
static analysis, such as looking for particular
patterns of system calls in an executable, has
been incorporated into some commercially
available security products.

Code rewriting is a less pervasive ap-
proach to the problem, but might become
more important (see the next section). With
this approach, a rewriting tool inserts extra
code to perform dynamic checks that ensure
bad things cannot happen. For example, a
Java compiler inserts code to check that
each array index is in bounds—if not, the
code throws an exception, thereby avoiding
the common class of buffer overflow at-
tacks. Rewriting can be carried out either at
the application code level, or below that in
subsystem functionality made available
through APIs, or even at the binary level.

Monitoring programs, using a reference
monitor, is the traditional approach used to
ensure programs do not do anything bad. For
instance, an operating system uses the page-
translation hardware to monitor the set of ad-
dresses that an application attempts to read,
write, or execute. If the application attempts
to access memory outside of its address space,
the kernel takes action (such as by signaling a
segmentation fault.) A more recent example of
an online reference monitor is the Java Virtual
Machine interpreter. The interpreter monitors
execution of applets and mediates access to
system calls by examining the execution stack
to determine who is issuing the system call re-
quest.3 In this case, stack inspection serves as a
policy enforcement mechanism.

If malicious code does damage, recovery
is only possible if the damage can be prop-
erly assessed and addressed. Creating an au-

To make
matters worse,
our traditional

tools for
ensuring the
security and
integrity of

hosts have not
kept pace with

the ever-
changing suite
of applications.

3 6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

dit trail that captures program behavior is
an essential step. Several program-auditing
tools are commercially available.

Each of the basic approaches—analysis,
rewriting, monitoring, and auditing—has its
strengths and weaknesses, but fortunately,
these approaches are not mutually exclusive
and can be used in concert. Of course, to
employ any of them, we must first identify
what could be “harmful” to a host. Like
any other computing task, we must turn the
vague idea of “harm” into a concrete, de-
tailed specification—a security policy—so
that it can be enforced by some automated
security architecture. Therein lies our great-
est danger, for as we create the policy, we
are likely to abstract or forget relevant de-
tails of the system. An attacker will turn to
these details first, stepping outside our pol-
icy model to circumvent the safeguards.

Stick to Your Principles
To protect against this common failing, it

is important to follow well-established secu-
rity principles when designing security poli-
cies. One of the most important principles,
first stated by Jerome Saltzer and Michael
Shroeder in 1975,4 is the Principle of Least
Privilege: a component should be given the
minimum access necessary to accomplish its
intended task. For example, we shouldn’t
give a program access to all files in a system
but rather, only those files that the program
needs to get its job done. This prevents the
program from either accidentally or mali-
ciously deleting or corrupting most files.
Obviously, the fewer files that the program
can access, the less the potential damage.
Stated simply, tighter constraints on a pro-
gram lead to better security.

Another important security principle is
the Principle of Minimum Trusted Comput-
ing Base. The trusted computing base (TCB)
is the set of hardware and software compo-
nents that make up our security enforce-
ment mechanisms. The Principle of Mini-
mum TCB states that, in general, the best
way to assure that your system is secure is
to keep your TCB small and simple. Even in
the mid 1970’s, operating system kernels
were thought to be too large to be trusted.
Those systems now seem small and tightly
structured compared to today’s widely used
kernels composed of millions of lines of
code.

Current Defenses
We now turn to examples of currently

deployed defenses for malicious code, focus-
ing on their relative pros and cons. Unfortu-
nately, the comparison shows that the pros
are outweighed by the cons, largely because
of a violation of the Least Privilege and
Minimal TCB principles.

OS-Based Reference Monitors
Historically, mechanisms for security pol-

icy enforcement have been provided by the
computer hardware and operating system.
Address translation hardware, distinct su-
pervisor- and user-modes, timer interrupts,
and system calls for invoking a trusted soft-
ware base serve in combination to enforce
limited forms of availability, fault contain-
ment, and authorization properties.

To a large degree, these mechanisms have
proven effective for protecting operating sys-
tem resources (such as files or devices) from
unauthorized access by humans or malicious
code. But the mechanisms work with a fixed
system-call interface and a fixed vocabulary
of principals, objects, and operations for
policies. Only by incurring significant cost
and usability penalties can that vocabulary
be expanded. It rarely is. Currently, most
desktop machines are configured as single-
user, so applications have complete access to
the machine resources.

Scanning for Known Malicious Code
In the days before networking was ram-

pant, malicious code mostly used the “sneaker
net” as its vector. Viruses spread from machine
to machine by humans carrying floppy disks
with infected programs on them. Perhaps the
built-in limitations in the vector kept the num-
ber of viruses small. In any case, the limited
number of viruses combined with the ineffi-
ciencies in the communication vector made
possible the strategy of blacklisting.

Blacklisting, a strategy used by most com-
mercial antivirus products, matches pro-
grams against a database of known virus sig-
natures (such as code fragments). If a match
is found, the program is disabled. Today,
commercial products scan not only binary
programs, but also email messages, Web
pages, or documents looking for viruses in
the form of scripts. This approach’s limita-
tions are obvious. Unknown malicious code
will easily get by the simple defenses to carry

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 37

In the days
before

networking
was rampant,

malicious code
mostly used the
“sneaker net”
as its vector.

Viruses spread
from machine to

machine by
humans

carrying floppy
disks with
infected

programs on
them.

out its dirty work. Until vendors can contain
a new virus and add a signature entry to the
database, it can run rampant. Recall both
the Melissa virus and the Love Bug. Another
limitation of the approach is that it does not
scale well; each file must be scanned against
an ever growing list of viruses.

Clearly, blacklisting by itself does not
provide adequate security. It is too easy to
make trivial changes to malicious code (a
process that can be automated in the code
itself) to thwart almost every black listing
scheme. Nevertheless, black listing is cheap
to implement and is thus worthwhile even if
it only stops the occasional naïve attack.

Code Signing
Code signing is an approach for authen-

ticating code based on public-key cryptog-
raphy and digital signatures. The digital sig-
nature lets a user determine which particu-
lar key the code was signed with and ensure
(with high probability) that the code has not
been tampered with since it was signed.

Unfortunately, most people assume that
digital signatures imply a lot more than they
really do. In particular, people typically as-
sume that the signed code was signed by the
owner of the key, that the owner of the key
wrote the code, that the code is good, and
that the code may be safely used in any con-
text. But these assumptions are often not true!

For instance, if a key is stolen, anyone
can use it to sign any piece of code—includ-
ing malicious code. As another example, the
developer might consider the code to be
“good” and thus sign it, even if the code
contains a Trojan horse or virus. Finally,
what developers or retailers consider to be
good might not be good for the user: A
component that sends back information to
the home office may seem useful to a ven-
dor, but will probably be considered a vio-
lation of privacy by the user.

Thus, while code signing is a useful tech-
nology, it suffers from some real limitations
not the least of which is poor understanding
of what a digital signature really means.
Furthermore, the adoption of code signing
has been hampered by the lack of a Public
Key Infrastructure. Very few PKI installa-
tions have been deployed, and those that
have do not begin to approach Internet
scale. Without a solid PKI, code signing will
not become common.

Promising New Defenses
Now we’ll discuss some promising tech-

nologies, identified by the study group, that
are emerging from research labs.

Software-Based Reference Monitors
Robert Wahbe and his colleagues sug-

gested software-based fault isolation as an
alternative to the traditional hardware-
based mechanisms used to ensure memory
safety.5 Their goal was to reduce the over-
head of cross-domain procedure calls and
prove a more flexible memory-safety mode.
Their basic idea is to rewrite binary code by
inserting checks on each memory access and
each control transfer to ensure that those
accesses are valid. Fred Schneider general-
ized the SFI idea to in-lined reference moni-
tors.6 With the IRM approach, a security
policy is specified in a declarative language,
and a general-purpose tool rewrites code,
inserting extra checks and state that serve to
enforce the policy. In principle, any security
policy that is a safety property can be en-
forced, so the approach is quite powerful.
For example, it can enforce any discre-
tionary access control policy. The approach
is also practical: Prototypes have been built
at both Cornell and MIT.7–9 One of the Cor-
nell prototypes, PSLang/PoET, works for
the Java Virtual Machine language and
gives competitive performance for the im-
plementation of Java’s stack inspection se-
curity policy.

Type-Safe Languages
Type-safe programming languages, such

as Java, Scheme, or ML, ensure that opera-
tions are only applied to values of the ap-
propriate type. Type systems that support
type abstraction let programmers specify
new, abstract types and signatures for oper-
ations that prevent unauthorized code from
applying the wrong operations to the wrong
values. In this respect, type systems, like
software-based reference monitors, go be-
yond operating systems in that they can be
used to enforce a wider class of application-
specific access policies. Static type systems
also enable offline enforcement through
static type checking instead of each time a
particular operation is performed. This lets
the type checker enforce certain policies that
are difficult with online techniques. For ex-
ample, Andrew Myers’ Jflow extends the

Type systems,
like software-

based
reference

monitors, go
beyond

operating
systems in that

they can be
used to enforce
a wider class of

application-
specific access

policies.

3 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

Java type system to enforce the policy that
high-security data should never be leaked.10

Current research in type systems is aimed at
eliminating more runtime checks (such as ar-
ray bounds checks11) or type-checking ma-
chine code.12

Proof-Carrying Code
Proof-carrying code (PCC), a concept in-

troduced by George Necula and Peter Lee,13

is a promising approach for gaining high as-
surance of security in systems. The basic idea
is to require any untrusted code to come
equipped with an explicit, machine-check-
able proof that the code respects a given se-
curity policy. Before executing the code, we
simply verify that the proof is valid with re-
spect to both the code and the policy. Be-
cause proof checkers can be quite simple
(Necula’s is about six pages of C code), it is
easier to ensure that they are correct. And in
principle, PCC can enforce any security pol-
icy—not just type safety—as long as the
code producer can construct a proof. Necula
and Lee have shown that such proofs can be
constructed automatically for standard type-
safety policies, if a compiler for a type-safe
programming language generates the code.
Unfortunately, going beyond standard no-
tions of type safety cannot be performed au-
tomatically without either restricting the
code or requiring human intervention. It is
unlikely that programmers will construct ex-
plicit proofs. Thus an active area of research
is how to integrate compilers and modern
theorem provers to produce PCC.

Policy as Achilles’ Heel
Thus far, we have focused on technology

solutions to the malicious code problem. To
be sure, technology can be of service; but
there is another critical aspect of the prob-
lem that remains to be addressed—the prob-
lem of policy.

In current forms, extensible systems do
little to determine how a system will behave
when extended in certain ways or, put an-
other way, what a particular piece of code

can and cannot do. In fact, today’s comput-
ers are hyper-malleable and overly compli-
cated. This greatly increases the malicious
code risk. In the end, determining whether
something malicious is happening requires
first defining some policy to enforce.

When Policy Breaks Down
Clearly, the notion of policy is deeply in-

tertwined with the concept of malicious
code. Understood in terms of policy, the
root causes of malicious code fall into two
basic categories: bad policy and incorrectly
enforced policy.

Bad policy allows malicious code to do
something malicious because policy does
not forbid it. Even if policy is perfectly en-
forced by technology, the policy itself must
be well formed. Subcategories of bad policy
include:

� misunderstandings of context, whereby
policy makes no sense in the context
where it was applied;

� over restriction, whereby the policy pre-
vents useful work when it is enforced; or

� noncomprehensiveness, whereby policy
fails to cover some situation or exists at
the wrong level of abstraction.

Incorrect policy enforcement allows code
to do something malicious even if it is cor-
rectly forbidden by policy. This situation
arises when either

� the enforcement mechanism is too weak
to implement the desired policy;

� there are bugs in the implementation of
the enforcement mechanism; or

� the enforcement mechanism is miscon-
figured.

Table 2 provides examples of malicious
code understood in our policy-based frame-
work.

As an example of context misunder-
standing, consider the role of scripting lan-
guages such as Visual Basic. Such languages

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 39

Table 2
Examples of Malicious Code Understood in Our Policy-Based Framework

Incorrect policy
Bad policy Examples enforcement Examples

Context misunderstood Scripting languages Mechanism too weak Privacy in smart cards
Overly restrictive Changing passwords too frequently Mechanism is buggy Buffer overflows in kernels
Noncomprehensive Executable content in e-mail Mechanism is misconfigured Sendmail debug mode

can be can be extremely useful and perfectly
safe in some contexts. But in other contexts,
scripts can be extremely dangerous. For in-
stance, there is rarely a need for scripts or
macros to be run when displaying a docu-
ment, yet this functionality is exactly what
the Melissa virus exploited.

An example of a policy that is too restric-
tive is one in which users are required to pick
new passwords at small intervals. Under such
a policy, people often forget their current
password. To avoid this, they may write
down their password in an insecure place,
making it easier for an attacker to steal it.

Most security policies fail to be comprehen-
sive, simply because designers cannot think of
all possible attacks. For instance, in the early
days of the Internet, there was no need for an
e-mail security policy, because mail readers did
not interpret messages. Today, messages can
contain attachments or scripts that are auto-
matically executed by readers.

Many desirable security policies just
aren’t achievable or practical. For instance,
stringent policies have been formulated for
smart cards to prevent disclosure of private
or secret information, such as health records
or crypto keys. But hiding information is a
tricky business and just about any enforce-
ment mechanism will fail to block all infor-
mation flow off the card. In the case of
smart cards, the designers used clever algo-
rithms and packaging techniques to prevent
tampering with the card in order to learn
private information. But they failed to take
into account of the power fluctuations
across the connection pins—data that can be
used to reconstruct private information.14

Sometimes an enforcement mechanism is
powerful enough to implement the policy,
but its implementation has bugs or weak-
nesses that prevent it from doing so. The
classic example of such bugs are the buffer

overflow attacks that arise in operating sys-
tems and applications.

Finally, sometimes the enforcement mech-
anism is powerful enough and coded prop-
erly, but simply misconfigured. For example,
the sendmail program has debugging features
that allow a programmer to gain remote ac-
cess to a machine. During development, this
feature was turned on. Unfortunately, the
feature remained on when sendmail was de-
ployed and subsequent attacks such as the
Morris worm took advantage of the opening.

Addressing the malicious code problem
requires the creation of sound policy and its
careful enforcement through technology.

The Many Levels of Policy
System administrators and MIS security

people think about policy in terms of user
groups, firewall rules, and computer use.
Security researchers steeped in program-
ming languages think about policy in terms
of memory safety and liveness properties.
Government policy wonks think about pol-
icy in terms of rules and regulations im-
posed on users and systems. The problem is,
all of these ways of thinking about policy
are equally valid!

So how are we to set policy to combat ma-
licious code? We believe the key is to focus
on defining metalevel policies that system ad-
ministrators work with naturally in terms of
collections of lower-level enforcement mech-
anisms. This is no trivial undertaking.

Most of the technologies we’ve explored
earlier in this article can serve to enforce
particular aspects of software behavior.
Some language researchers, for example,
consider the issue of enforcing safety prop-
erties “solved,” at least in theory. Enforcing
liveness properties or confidentiality is
harder, but fairly clear research agendas ex-
ist to address the open issues. Of course, the
terms safety, liveness, and confidentiality
have technical meanings. Intuitively, a
safety property states that a program will
never perform a bad action, for some pre-
cisely defined notion of “bad.” An example
of a bad action is overflowing a buffer. A
liveness property, on the other hand, states
that a program will eventually perform
some desired action or set of actions. For
example, the property that a program will
eventually release all of the memory that it
allocates is a liveness property. Finally, con-

4 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

About the Authors

Gary McGraw is the vice president of Corporate Technology at Cigital (formerly known
as Reliable Software Technologies), where he pursues research in software security while lead-
ing the Software Security Group. He has served as principal investigator on grants from AFRL,
DARPA, NSF, and NIST’s Advanced Technology Program. He chairs the National Infosec Re-
search Council’s Malicious Code Infosec Science and Technology Study Group. He coauthored
both Java Security (Wiley, 1996) and Securing Java (Wiley, 1999), and is currently writing a
book entitled Building Secure Software (Addison-Wesley, 2001). Contact him at Cigital, 21351
Ridgetop Circle, Ste. 400, Dulles, VA 20166; gem@rstcorp.com.

Greg Morrisett is an assistant professor in the Computer Science Department at Cornell
University. He is a Sloan Research Fellow, recipient of an NSF Career award, member of the
IFIP Working Group 2.8 (Functional Programming), editor for the Journal of Functional Pro-
gramming, and an associate editor for ACM Transactions on Programming Languages and
Systems. His research interests include programming language-based security and type sys-
tems. Contact him at the Dept. of Computer Science, 4133 Upson Hall, Cornell Univ., Ithaca,
NY 15213; jgm@cs.cornell.edu.

fidentiality is meant to ensure that certain
values remain private or secret.

The problem is that low-level properties
such as safety and liveness do not align nicely
with what most security administrators think
of as policy building blocks. Thus an open
question is how to express reasonable secu-
rity policy that can be directly transformed
into technology enforcement solutions.

The answer is to understand policy as a
layered set of abstractions. Some prelimi-
nary work exists (for example Netscape
Navigator’s approach to policy sets based
on expected code behavior), but much work
remains to be done.

T he malicious code problem will
continue to grow as the Internet
grows. The constantly accelerating

trends of interconnectedness, complexity,
and extensibility make addressing the prob-
lem a more urgent need than ever. As exten-
sible information systems become more
ubiquitous, moving into everyday devices
and playing key roles in life-critical systems,
the level of the threat moves out of the tech-
nical world and into the real world. We
must work on this problem.

Our best hope in combating malicious
code is creating sound policy about soft-
ware behavior and enforcing that policy
through the use of technology. An emphasis
on one or the other alone will do little to
help. Any answer will require a set of en-
forcement technologies that can be directly
tied to policy set and understood by non-
technical users.

Acknowledgments
Study Group members include Gary McGraw,

Cigital, chair; Avi Rubin, AT&T Research; Ed Felten,
Princeton; Peter G. Neumann, SRI; Lee Badger, NAI
Labs; Greg Morrisett, Cornell; Tim Teitelbaum,
Grammatech; Virgil Gligor, University of Maryland;
Tom Markham, Secure Computing; Jay Lepreau, Uni-
versity of Utah; Bob Balzer, ISI; Joshua Haines, Lin-
coln Labs; Roger Thompson, ICSA.net; Bob Clemons,
NSA; Penny Chase, MITRE; Carl Landwehr,
Mitretek; Brad Arkin, Reliable Software Technolo-
gies; Sami Saydjari, DARPA; Brian Witten, DARPA;
and Dave Thompson, Mitretek. Guests who partici-
pated in the two day San Antonio workshop include
mudge, the l0pht; Crispin Cowen, Wirex; Fred
Schneider, Cornell; Peter Lee, CMU; Richard Smith,

pharlap; John Rushby, SRI; Dan Wallach, Rice Uni-
versity; Amy Felty, University of Ottawa; and David
Evans, University of Virginia.

The workshops on which this report is based were
convened under the auspices of the Infosec Research
Council (IRC), with members from US Government
organizations that sponsor and conduct information
security research. Views expressed in the report are
those of the authors and may not reflect those of the
IRC, its members, or the organizations they represent.

References
1. J. Viega et al., “ITS4: A Static Vulnerability Scanner for

C and C++ Code,” To appear in Proc. Ann. Computer
Security Applications Conf. 2000, IEEE Computer Soc.
Press, Los Alamitos, Calif: the ITS4 tool is available at
www.rstcorp.com/its4.

2. D. Wagner et al., “A First Step Towards Automated De-
tection of Buffer Overrun Vulnerabilities,” Proc. Net-
work and Distributed Systems Security Symposium
(NDSS 2000), Internet Soc., Reston, Va., 2000, pp.
3–18.

3. G. McGraw and E. Felten, Securing Java: Getting
Down to Business with Mobile Code, John Wiley &
Sons, New York, 1999; complete Web edition at
www.securingjava.com.

4. J.H. Salzter and M.D. Schroeder, “The Protection of In-
formation in Computer Systems,” Proc. IEEE, IEEE
Press, Piscataway, N.J., Vol. 9, No. 63, 1975, pp.
1278–1308.

5. R. Wahbe et al., “Efficient Software-Based Fault Isola-
tion,” Proc. 14th ACM Symp. Operating System Princi-
ples (SOSP), ACM Press, New York, 1993, pp.
203–216.

6. F. Schneider, “Enforceable Security Policies,” ACM
Trans. Information and System Security, Vol. 2, No. 4,
Mar. 2000.

7. U. Erlingsson and F.B. Schneider, “IRM Enforcement of
Java Stack Inspection,” IEEE Symp. Security and Pri-
vacy, IEEE Press, Piscataway, N.J., 2000.

8. D. Evans and A. Twyman, “Policy-Directed Code
Safety,” Proc. IEEE Symp. Security an Privacy, IEEE
Press, Piscataway, N.J., 1999; see also www.cs.virginia.
edu/~evans.

9. U. Erlingsson, U. and F.B. Schneider, “SASI Enforce-
ment of Security Policies: A Retrospective,” Proc. New
Security Paradigms Workshop, ACM Press, New York,
1999, pp. 246–255.

10. A.C. Myers, “JFlow: Practical Mostly Static Informa-
tion Flow Control,” Proc. 26th ACM Symp. Principles
of Programming Languages (POPL), ACM Press, New
York, 1999, pp. 228–241.

11. H. Xi and F. Pfenning, “Dependent Types in Practical
Programming,” Proc. 26th ACM Symp. Principles of
Programming Languages (POPL), ACM Press, New
York, 1999, pp. 214–227.

12. G. Morrisett et al., “From System-F to Typed Assembly
Language,” ACM Trans. Programming Languages and
Systems, Vol., 21, No. 3, May 1999, pp. 528–569;
www.cs.cornell.edu/talc.

13. G.C. Necula, “Proof-Carrying Code,” Proc. 24th ACM
Symp. Principles of Programming Languages (POPL),
ACM Press, New York, 1997, pp. 106–119; www-
nt.cs.Berkeley.edu/home/necula/public_html/pcc.html.

14. P. Kocher, J. Jaffee, and B. Jun, “Differential Power
Analysis: Leaking Secrets,”Advances in Cryptology–
CRYPTO’99. . In M. Weiner, ed., Lecture Notes in Com-
puter Science, Vol. 1666, Springer, New York, Aug. 1999,
pp. 388-397; www.cryptography.com/dpa/Dpa.pdf.

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 41

Our best hope
in combating

malicious code
is creating

sound policy
about software
behavior and
enforcing that
policy through

the use of
technology.

