
G
U

ES
T 

ED
IT

O
R
S’

 IN
TR

O

Running somebody else’s code

on your computer is a risky

activity. It’s an old problem, 

but it  gets a new twist 

on the World Wide Web.

MOBILE CODE
AND SECURITY

GARY MCGRAW

Reliable Software Technologies 
EDWARD W. FELTEN

Princeton University

Mobile code is code that traverses a network during its lifetime
and executes at the destination machine. In its most powerful
guise, the same piece of mobile code is able to run on multiple

platforms (both Unix boxes and Win32 machines, for example). This pow-
erful idea opens up many new possibilities on the World Wide Web, a het-
erogeneous collection of machines. For the first time it is possible to have
Web-based programs whose behavior is coded in some common pro-
gramming language. This code need not be compiled to tens of platforms
and distributed only after determining the target platform. Instead, mobile
code is written once and then runs wherever it ends up. There are many
well-known systems for creating and using mobile code, including Java,
JavaScript, VBScript, ActiveX, Postscript, and Word macros.

This special issue of IEEE Internet Computing is concerned with the
security implications of mobile code. The problem is simply this: Run-
ning somebody else’s code on your computer is a risky activity. It is not a
new problem, of course. It’s an old problem with a new twist.

A BRIEF HISTORY OF SECURITY 
CONCERNS FOR MOBILE CODE
In the early days of the Internet, everyone agreed that downloading arbi-
trary binaries and executing them on your machine was a Bad Idea. Of
course, most people did it anyway, and some people suffered as a result.
By the mid 1980s, there was a lot of freeware and shareware available to
download. To find it, you could use Archie, which provided a way to search
a large index of anonymous FTP content. Once you found some leads
(often several ASCII pages worth), you chose your target and FTP’d what
you needed. Then you installed and ran it.

The risks of downloading and running a random person’s code on your
machine are clear. If the code has a virus attached, it can infect your machine.
If the program is a Trojan Horse, it can take over your machine for its own
purposes while appearing to do something useful. How can we be sure that a
program someone says is useful hasn’t been hijacked to do something nasty? 

26 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ 1089-7801/ 9 8 /$10.00 ©1998 IEEE IEEE INTERNET

.



M O B I L E  C O D E  A N D  S E C U R I T Y

27IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1998

By the late 1980s, checksumming provided part
of the answer. A checksum is a simple computation
performed on a piece of code to provide a digest or
a “thumbprint” of the code using a one-way hash
function. At least a few anonymously download-
able programs included checksum data that could
be used for rudimentary data integrity purposes,
helping to ensure that the code downloaded at the
end of the communication pipe was the same as the
original code distributed by its author.  Of course,
who was to say that a program’s checksum hadn’t
been tampered with or that an author did not
include Trojan Horse functionality? 

The Web got its start in 1992. At first the
HTML-based Web was static. Mobile code systems
like Java and JavaScript changed all that, making it
possible for a Web server to provide programs as
content. The dangers of mobile code and systems
for addressing these dangers are the focus of this
issue. The problem is that systems like Java and
JavaScript are so unobtrusive that a Web user may
not even notice that they are requesting and run-
ning mobile code on their computer. What once
required a conscious decision and several steps in a
technological process now requires a simple click
of the mouse on a Web link. 

This extra risk is not very alarming if we oper-
ate under the assumption that the code we’re run-
ning is trusted. But why should a Web user trust a
random piece of code encountered on the Web?
Clearly they should not. As a reaction to this con-
cern, many popular forms of mobile code (includ-
ing Java) were designed to run untrusted code (and,
more recently, partially trusted code) in a secure
manner. This issue discusses how mobile code sys-
tems attempt to do this and to what extent they
succeed.

DEVELOPER CONCERNS
From a technology perspective, a complete securi-
ty solution for mobile code will always involve two
distinct parts. First, the mobile code platform itself
must be secure. For example, unless the Java Vir-
tual Machine is doing its job perfectly, Java’s lan-
guage-based approach to security will not work.1

Second, any code developed for use on the mobile
code platform must be designed and implemented
with security in mind. In other words, simply writ-
ing code in Java is no guarantee of secure behavior. 

Obviously, developers play a critical role in both
parts of the solution. Creating a mobile code sys-
tem is a complex undertaking that pushes the lim-
its of available technology and research. 

Consider Java. Sun Microsystems and the Java
licensees have worked hard to evolve a system that
supports secure creation and use of mobile code.
But Java is not immune to security risks.1,2 Imple-
menting a language-based security model is not
easy, and there are bound to be mistakes.

A prime example of the ways in which Java is
pushing the envelope is its combination of type
safety and dynamic loading. Java bases its security
approach on type safety. Programs must be pre-
vented from accessing memory and other security-
critical resources in inappropriate ways. Every piece
of memory is part of some Java object, including
the classes that make up the security model itself.
Java is also designed so that classes can be dynami-
cally added and removed from the runtime envi-
ronment. Dynamic loading is handled by Java’s
class loading mechanisms. The question is how to

sustain type safety and allow dynamic loading at
the same time. This complex question has been
addressed in a recent dissertation.3 Many open
research issues remain.

Programming language researchers have also
done some work trying to prove the soundness of
the Java language and VM definition.4,5 Although
this work is still in preliminary stages, some inter-
esting and suggestive results are available. The bot-
tom line is that the definition of Java will probably
turn out to be sound, once many more details have
been filled in.

Developers are charged with creating secure
implementations of both the mobile code platform
and the code that eventually runs on the platform.
Both of these tasks require a developer to navigate
the often uncharted waters of language-based secu-
rity. A necessary side effect of implementing mobile
code (which can in some ways be considered a very
large security-related experiment) is making mis-
takes and learning from them. 

What we have learned is that it is important to
develop mobile code and mobile code platforms with
a defensive stance so that neither is susceptible to
attack. Unfortunately, doing so requires extensive

What once required a conscious
decision and a process now
requires only a mouse click.

.



G U E S T  E D I T O R S ’  I N T R O

28 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET

knowledge both of particular mobile code systems
and of computer security issues. In our book, Securing
Java, we list 12 rules Java developers should follow so
that their code is harder to attack.1 Similar rules can
be developed for other mobile code systems.

Developing secure programs in any language is
neither trivial nor automatic. Anybody who reads
the newspapers or the trade press can see how often
skilled programmers write code with security bugs.
You can make gaffes developing security-critical
code in any language. Know your enemy. Think
about what might confront your code in terms of
malicious attacks. Mitigate risks by designing, cod-
ing, and testing carefully.

THE ARTICLES
Through a peer-review process, we selected four
articles that touch on the central issues of mobile
code security. 

Two of them provide broad views of this domain. 
“Mobile Code Security,” (pp. 30-34) by Avi

Rubin and Dan Geer, introduces the fundamental
issues and outlines five different approaches to
securing mobile code: the Java sandbox as imple-
mented in the Java Developers Kit 1.0 and 1.1,
code signing as found in Authenticode and the
diverse Java code signing systems of JDK 1.1, the
combination of sandboxes and signatures as found
in JDK 1.2, firewalling, and proof-carrying code.
The authors give excellent citations to more in-
depth discussions of each approach.

“Securing Systems Against External Programs,”
(pp. 35-45) by Brant Hashii, Manoj Lal, Steven
Samorodin, and Raju Pandey, describes and cate-
gorizes security risks associated with mobile code.
The security models introduced by Rubin and Geer
are discussed in light of these risk categories. Solu-
tions are classified according to a simple framework
of phases encountered during the lifetime of mobile

The references of each of the four articles included in this issue
are all good places to begin further inquiry. In addition, the fol-
lowing resources may be useful.

PAPERS
M. Erdos, B. Hartman, and M. Mueller, “Security Reference Model

for the Java Developers Kit 1.0.2,” white paper, Sun Microsys-
tems, 1996, http://www.javasoft.com/security/SRM.html.

D. Hopwood, “A Comparison Between Java and ActiveX Secu-
rity,” available online at http://www.users.zetnet.co.uk/
hopwood/papers/compsec97.html.

D. Martin, S. Rajagopalan, and A. Rubin, “Blocking Java
Applets at the Firewall,” Proc. 1997 Network and Distrib-
uted System Security Symp., Internet Society, 1997; avail-
able at http://www.cs.bu.edu/techreports/96-026-java-
firewalls.ps.Z.

G. Necula and P. Lee, “Safe Kernel Extensions Without Run-
Time Checking,” Proc. Second Symp. Operating Systems
Design and Implementation, Usenix Assn., Berkeley, Calif.,
1996, pp. 229-243. (Proof-carrying code.)

D. Wallach, A New Approach to Mobile Code Security, doctoral
dissertation, Princeton Univ., Dept. of Computer Science, 1998. 

WEB SITES
The Java Secur i ty  Hot l i s t (over  100 l inks  in

n ine  ca tegor ies )  •  www.rs t corp.com/
javasecur i ty/ l inks .h tml

Pr ince ton’s  Secure  In terne t  Programming
Laborator y ( see  espec ia l l y  the  Pub l i ca t ions
and FAQs)  •  www.cs .pr ince ton.edu/s ip/

Mobi le  Code B ib l iography ( inc ludes  some
secur i ty - re la ted papers )  •  www.cnr i . res ton .
va.us/home/koe/bib/mobi le -abs .b ib .h tml

Mobi le  Code Secur i ty  B ib l iography •
fas . s fu .ca/cs/peop le/GradStuden t s/
pwfong/persona l/Secur i ty/

Univers i ty  o f  Washington’s  K imera group •
kimera.cs .wash ing ton.edu/

JavaScr ip t  Secur i ty  F laws •
www.os f .org/~loverso/ javascr ip t/

WHERE TO LEARN MORE ABOUT MOBILE CODE SECURITY

You can make gaffes developing
security-critical code in any

language.

.



M O B I L E  C O D E  A N D  S E C U R I T Y

29IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1998

code: development, migration, and execution.
Diverse approaches for securing mobile code are
compared and contrasted.

The third and fourth articles describe models
related to securing Java code and code written in
Web scripting languages.

“Secure Web Scripting,” (pp. 46-55) by Vinod
Anupam and Alain Mayer, begins with a short
description of the security risks associated with sim-
ple languages for embedding scripts in the HTML
of a Web page for interpretation by a browser. A
security design is proposed that can prevent some
of the attacks commonly encountered on the Web.
Many of the fundamental characteristics of the pro-
posed design are borrowed directly from secure
operating systems research. 

“Secure Java Class Loading,”  (pp. 56-61) by Li
Gong, describes Java’s class loading mechanism, an
essential piece of the Java security model. Java’s lan-
guage-based approach to security is an enforcement
model based on four pieces: the verifier, which pro-
vides some type safety analysis; class loaders, which
add and remove classes dynamically from the Java
runtime environment, a security manager that
enforces restrictions on untrusted code and is the
most apparent piece of the security model,  and
(new to JDK 1.2) an access controller, which uses
stack inspection and codified security enforcement
rules (specified by the user) to make access control
decisions. Java’s dynamic class loading capability is
hard to reconcile with the security requirement for
type safety. After all, if code has not yet arrived,
how can we know that it is being used in a type-
safe manner? Java’s sophisticated class loading
approach helps address this complex issue. Gong’s
article discusses the new JDK 1.2 design with an
emphasis on the internals of class loaders.

CAN MOBILE CODE 
BE SECURE?
Today’s diverse approaches to securing mobile code
are all works in progress. Each different imple-
mentation of mobile code, including Java, ActiveX,
and JavaScript, faces similar security risks; but each
system presents a different way of dealing with the
risks. In our opinion, Java’s security design stands
head and shoulders above the competition. But
Java is a complex system that is evolving at a seri-
ous clip. Securing Java and other forms of mobile
code is still as much an art as it is a science.

There is no such thing as absolute security,
whether the code is mobile or stays put right where
it is developed. Creating and maintaining secure

systems requires rigorous software assurance and
the ability to manage risks wisely. Mobile code
makes securing a system more complicated, but the
benefits of mobile code are often worth a bit of
added risk. As the world becomes increasingly net-
worked and interdevice communication becomes
essential, mobile code is likely to play an increas-
ingly important role. ■

REFERENCES
1. G. McGraw and E. Felten, Securing Java: Getting Down to

Business with Mobile Code, John Wiley and Sons, New York,

N.Y, 1998.

2. D. Dean, E. Felten, and D. Wallach, “Java Security: From

Hotjava to Netscape and Beyond,” Proc. 1996 IEEE Symp.

on Security and Privacy, IEEE Computer Society, Los

Alamitos, Calif., 1996.

3. D. Dean,  “Formal Aspects of Mobile Code Security,” doc-

toral dissertation, Princeton Univ., Dept. of Computer Sci-

ence, 1998.

4. S. Drossopoulou and S. Eisenbach, “Towards an Operations

Semantics and Proof of Type Soundness for Java,”  tech.

report, 1998; available at http://outoften.doc.ic.ac.uk/

projects/slurp/papers.html.

5. R. Stata and M. Abadi, “A Type System for Java Bytecode Sub-

routine,” Proc. 25th ACM Symp. on Principles of Programming

Languages, ACM Press, New York, 1998, pp. 149-160.

Gary McGraw is vice president of business development at Reli-

able Software Technologies. He holds a dual PhD in cogni-

tive science and computer science from Indiana University

and a BA in philosophy from the University of Virginia.

McGraw coauthored both Java Security: Hostile Applets,

Holes, and Antidotes (John Wiley & Sons, New York, 1996)

and Securing Java: Getting down to Business with Mobile Code

(Wiley, 1998) with Ed Felten. He has published over 50

peer-reviewed technical papers and is principal investigator

on grants from Air Force Research labs, DARPA, and

NIST’s Advanced Technology Program. McGraw is a mem-

ber of the IEEE, AAAI, and Cognitive Science Society.  

Edward W. Felten is assistant professor of computer science at

Princeton University. His research specialties include oper-

ating systems, Internet software, and Internet security. He

received his BS with honors in physics from the California

Institute of Technology in 1985 and his PhD in computer

science and engineering from the University of Washington

in 1993. He has published more than 40 research papers

and won both a National Science Foundation Young Inves-

tigator award and an Alfred P. Sloan fellowship for his work. 

Readers may contact McGraw and Felten via email at gem@

rstcorp.com and felten@cs.princeton.com, respectively.

.


