
47SEPTEMBER 2010Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE

COVER FE ATURE

We’re studying real companies with real initiatives that
have hundreds of employees working on software secu-
rity every day. The BSIMM (Building Security In Maturity
Model) model that we’ve built is available as a free down-
load (http://bsimm2.com). BSIMM is a study of how 30 firms
approach software security. (The “BSIMM Firms” sidebar
provides an alphabetical list of 20 of the 30 firms that will
allow us to talk about them.) Many of these companies are
household names. It’s likely that most readers will run at
least some software from one of these companies because
their software pretty much pervades the planet. Some of
these companies have been focused on software security
for more than a decade, and studying what they’re actually
doing is what I’ve been working on for the past year or so.

We launched the BSIMM project in March 2009. The
first study included nine companies; since that time, the
study has tripled in size. It’s a data-driven model, and
we’ve been gathering more data and adjusting the model
accordingly.

Based on our observations of what these successful
companies are doing, we can now state with some con-
fidence that we know what actually works in software
security and what people should be doing.

SOBEL: One of the surprising facts that I took away from
my review of your project is that the majority of the com-
panies you’ve been studying deal with financial services. I
was surprised to see that only four of the companies work
in defense. Are you surprised by that distribution?

SOBEL: As Chief Technology Officer at Cigital (www.cigital.
com), Gary McGraw counsels businesses on building and
running software security initiatives.

Gary, you have made many contributions in the area
of software assurance in a relatively short period of time,
including books such as Building Secure Software: How
to Avoid Security Problems the Right Way and Software
Security: Building Security In. From your perspective, what
accomplishments are you most proud of?

McGRAW: What I’m the most proud of is something that
I’m still working on. You know how it is when you’re in
the middle of a project—it’s very exciting and fun to do.
Although I’m proud of the books that I’ve written, the
discipline of software security and, maybe more widely,
software assurance, has matured significantly in the past
15 years. Building Secure Software was written in 1999,
and Software Security was written in 2006. More recently,
we’ve been studying actual software security initiatives
and then reporting our findings.

In an interview conducted by Computer edi-
torial board member Ann E.K. Sobel, Cigital
CTO Gary McGraw discusses the state of
software security and the BSIMM—a data-
driven research project describing and
measuring what successful organizations
are doing to ensure software security.

Ann E.K. Sobel, Miami University

Gary McGraw, Cigital

INTERVIEW:
SOFTWARE
SECURITY IN
THE REAL WORLD

COVER FE ATURE

COMPUTER 48

McGRAW: Not really. It’s probably more a reflection of who
I know and the kind of work I do than it might be of the
market. Cigital is a software security services provider. We
have about 140 employees, and we provide services mostly
to the financial services industry. Among the 30 compa-
nies in BSIMM, 12 are financial services organizations,
including: Bank of America, Capital One, and Wells Fargo.
Seven are independent software vendors (ISVs), including
Microsoft, Google, EMC, and Symantec.

With populations so theoretically disparate as financial
services on the one hand and ISVs on the other, you might
think that it wouldn’t be possible to build a model that
describes the activities undertaken by both. But it turns
out that it is indeed possible. In fact, now that we have
30 companies in our study, we have a statistically signifi-
cant data set. We can do some straightforward statistical
analysis like a T-squared comparison of activities between
verticals. Not only can we say that there’s an overlap in
activities, we can demonstrate how overwhelming that
overlap is. Among 109 activities, these two verticals have
100 activities in common.

It turns out that when you look at the data for ISVs
and financial services firms, they’re doing the same
thing. A pithy way of putting this, as my coauthor Brian
Chess likes to say, is, “There are no special snowflakes.”
The question is whether or not that insight also applies
to defense contractors. The answer is that we haven’t
done enough studies of people working in defense to be
able to determine what normal is. But in my experience,

the government has tended to be far behind the com-
mercial market when it comes to software security, and
even software assurance work. That may be because
the overly bureaucratic, almost too rigid approaches to
accreditation and certification like the common criteria
are frankly just untenable. They don’t work in a real
economy in my view.

If you look at what the market has done to address the
need for software security without engendering a huge bu-
reaucracy, you see the sorts of activities that we described
in the BSIMM. The activities have much more to do with
actually thinking about and testing software and training
people to do a better job than they have been doing without
filling out reams of paperwork and getting a special stamp
from the secretary of underwater basket weaving.

SOBEL: Given that you’re finding this common core, do
you think that the day might come when you step back and
assess whether these are good activities or bad activities,
somehow passing judgment in terms of what should be
considered best practices or not?

McGRAW: The answer to that question is somewhat
complicated.

As it turns out, we observed 109 activities. However,
if there had been 212 activities, we would have reported
that many. There was no constraint on either a minimum
or maximum. We gathered the data first and used it to
build the model. Of those 109 activities that we observed
among the 30 firms, there are 15 that the most firms do. In
other words, 20 or more firms, 66 percent, are doing these
particular 15 activities.

That means there is a high density core among the
activities that we observed. On the other hand, what we
cannot say with any confidence is how much you should
invest in one activity over the other 108. In addition, we
have no way of directly measuring the efficiency or effec-
tiveness of an individual activity.

We’re building a community of like-minded people who
are doing this professionally—people like Steve Lipner at
Microsoft, Eric Baize at EMC, and Brad Arkin at Adobe.
These people have a desire to get real data as well. They
really want to know how they should invest, and they want
the data to help them make decisions about adjusting the
knobs on, say, the 12 practices that we have. (Each practice
has multiple activities.)

We are collectively very interested in trying to de-
termine whether we can get a handle on efficiency and
effectiveness. As a community, we have decided that that’s
the direction in which we’re going to take the research.

Ultimately, our research is going to evolve in two ways.
We’re going to continue to add firms to the population. I
would definitely like to include defense contractors, the
military, and government agencies in the data set. We’re

T he BSIMM (Building Security In Maturity Model) project takes
advantage of common ground between diverse method-

ologies. BSIMM is a descriptive study of the software security
activities practiced by 30 firms. As such, the project is much less
about what an organization should do for software security and
much more about what leading firms are actually doing. BSIMM
is free, distributed under the creative commons license, and
available for download at http://bsimm2.com.

The BSIMM is an observation-based, descriptive model
directly describing the collective software security activities of
30 software security initiatives. Among the 30 firms studied in
the BSIMM project, the following 20 have graciously allowed
their names to be used.

BSIMM FIRMS

•	 Adobe
•	 AON
•	 Bank of America
•	 Capital One
•	 The Depository Trust &

Clearing Corporation
(DTCC)

•	 EMC
•	 Google
•	 Intel
•	 Intuit

•	 Microsoft
•	 Nokia
•	 Qualcomm
•	 Sallie Mae
•	 Standard Life
•	 SWIFT
•	 Symantec
•	 Telecom Italia
•	 Thomson Reuters
•	 VMware

49SEPTEMBER 2010

also going to expand the work to try to get a handle on
efficiency and effectiveness.

It’s a significant challenge, and accomplishing it isn’t
going to be trivial, but we’ve already begun to meet that
challenge to a certain extent.

We’d all love to be able to put some software in a magic
box on which either a red light would light up, in which
case we would throw the software away, or a green light
would light up, and we then could be certain that the soft-
ware is secure enough for use. But that’s a pipe dream.
Sadly, my belief as a computer scientist and as a software
practitioner is that we can’t do a direct first-order measure-
ment of software security.

Instead, we have to retreat—and I use that word very
carefully and consciously—to looking only at activities
and creating what you might call a second-order metric.
Looking at activities is not really looking at the thing you’re
producing. But our belief is that those activities do in fact
lead to better software.

I wish that we could measure software security directly,
but we can’t. Instead, we have this activity-driven second-
order measurement, and we build our software security
measuring stick based on observed activities.

SOBEL: Unlike the personal software maturity model,
where we actually assess our processes and the steps that
we take in construction, it’s kind of a removed activity, if
you will.

McGRAW: That’s right. The only difference between my
philosophy and, say, Watts Humphrey’s philosophy, who
began his work long ago, is that in order to get a handle on
security, I think we have to talk explicitly about security.
We have to realize that attackers do have what philoso-
phers would call an intentional stance. Thinking about
the attacker’s intent and thinking like a bad guy doing the
wrong thing on purpose and intentionally trying to break
a system makes security ever so much more difficult and
interesting than something like reliability. I think Watts
would argue, on the other hand, that reliability is a super-
set of security—if you just get your requirements right,
security will come out in the wash. I just don’t believe that.

SOBEL: Do you think there’s any merit in either certifi-
cation or standards as a way for companies to address
software security assurance?

McGRAW: I do actually. Let me put a slightly finer point
on it. I believe that the BSIMM has the ability to become a
de facto standard, and in fact that’s already beginning to
happen. As the community involved in the BSIMM project
grows, we’re seeing a lot of cross-pollination, learning from
each other, and a little bit of competing with the Joneses.
This is great because the results benefit the common good.

On the other hand, if we approach software measurement
only as a bureaucratic exercise in record keeping like the
common criteria has tried to do, the results can quickly
become obviated and pretty much useless.

There are some reasons for that which may not apply
more widely to all certification and accreditation schemes
but do apply, say, to the common criteria. One of the
challenges is that the common criteria are wide ranging.
Everybody said they wanted to assess all sorts of different
products from firewalls to VoIP phones to laptops to coffee
mugs, whatever is lying around. That means we have to
create special protection profiles for each one of these
targets of evaluation. Immediately that opens Pandora’s
box, and you can’t ever get those evils back into it.

The problem is that every individual company with an
individual product said, “We have a special protection

profile just for us,” and soon the common criteria weren’t
very common at all. We weren’t measuring anything in
common—all we were doing was ensuring that somebody
had to spend half a million dollars pushing paper around
in circles.

My hope is that the BSIMM doesn’t devolve to that sort
of thing. The “no special snowflake” result that I described
before is very encouraging along those lines. Let me give
you a real-world example. The guys in New York who run
financial services firms (who are all the butt of the media
coverage these days due to their shenanigans with risk) had
always asked the independent software vendors to provide
some evidence that their code was secure. The software
companies would by and large say, “Oh, yes, yes, I know
that you make software, but we make software differently.
We’re special professionals and your software is also spe-
cial, and these are not the droids you’re looking for.” They
would try to pull some sort of Jedi mind maneuver.

But our results show that, in fact, you can ask the
software providers to give you some evidence. Because,
for example, the static analysis tools and results that
they’re getting are very similar to the static analysis tools
and results that the financial services firms are already
demanding from their own developers. There is no special
snowflake! This is good, because it turns the lights on in
the marketplace and allows us to compare measurements
directly. The BSIMM work allows this measurement, which
you can then use for various things.

Another concept that we’ve been thinking about (but
we’ve never actually seen this in practice) is to imagine that

We have to realize that attackers do
have what philosophers would call an
intentional stance.

COVER FE ATURE

COMPUTER 50

a firm has its own BSIMM score and knows to some extent
(metaphorically) how “tall” it is. The company can make
a statement to its subcontractors and vendors and say,
“Look, we’re this tall, and if you want to ride the ride, you
have to be this tall too.” Thus, the company could demand
some sort of a measurement that is a proxy for whether or
not its software is actually secure.

I hope that sort of thing happens. I do believe that
sometimes accreditation and certification schemes and
measurement can be used properly. The trick is how to go
about actually having them be meaningful. We’re trying to
approach this as scientifically as possible with the BSIMM.

SOBEL: It sounds like your view is that such activities
would probably evolve from businesses putting forth dif-
ferent methodologies and tool support for measuring such
things. Generally, certification activities tend to come from
professional organizations or standards could possibly
come from government agencies, thus a business model
would be appropriate.

McGRAW: Yes, that’s probably a reflection of the fact that
I’m a business guy, and my firm works with other firms
that develop software for a living or consume software
that absolutely has to work because it’s vital to their opera-
tion. Unlike people who don’t really develop software, we
went out to find out what companies are doing. We looked
around and said, “If we go out into the jungle and make
some observations, what is it we’re going to see?”

When I’m describing the BSIMM in a talk, I use the state-
ment that “monkeys eat bananas.” The idea is that you go
out into a jungle and you see a monkey eating a banana.
Then you go out into a different jungle, and you say, “Look,
monkeys eat bananas in this jungle too.” After making this
observation in 30 jungles, you say, “You know what, mon-
keys seem to eat bananas.” This is an observation; it’s not a
value judgment. We don’t say things like, “Don’t steal your
neighbors’ bananas” or “Only eat yellow bananas and not
green ones” or “Never run with a banana in your mouth.”
There are no such value judgments in the BSIMM. Instead,
we focus on observation. What is it that we can observe?

The insight was that after we’ve been doing software
security for a decade, and after some companies have
spent literally millions of dollars and hundreds of thou-
sands of person-hours on software security, surely we’ve
figured out something that’s safe. Even though the par-
ticular histories or case studies of each of these 30 firms

are distinct and different, we can still use the same mea-
suring stick.

That was the trick: coming up with a measuring stick
that applies no matter what the particular history is or
what the evolution of the various software security initia-
tives was.

SOBEL: If a business wants to apply this measurement in
its organization even though it hasn’t participated in such
efforts before, what does it need to do?

McGRAW: There are two answers to that question. The
first answer is quite simple. The BSIMM is available on the
website or at the old URL (http://bsi-mm.com)—they both
point to the same thing now. Businesses can get the model
and use it however they want.

Now, of course, when you put out a measuring stick for
free and you say, “Use it however you want,” you shouldn’t
be surprised if people decide to take your measuring stick,
crack it up, build a little fire, and cook a hot dog over it. This
is not our intention, but we fully expect that to happen.

You can use the BSIMM to measure yourself, but
there’s an issue with self-measurement. Nobody I know
who combs his or her hair while looking in the bathroom
mirror in the morning says, “Gosh, what a horrible-looking
person I am.” Everybody says, “Wow, I’m attractive. I’m
ready to go out in the world.” That sort of self-reporting
bias is certainly present in the BSIMM as well. To get
around that problem, for the 30 firms we have observed
so far, in addition to a handful of other people who have
assisted with gathering the data, three observers—Sammy
Migues, Brian Chess, and I—have participated in collecting
and analyzing the data.

The data is gathered in an objective fashion and then
presented to the firm under study. Instead of having a firm
fill out some sort of a questionnaire or having somebody
with a clipboard ask, “Do you do activity one? Do you do
activity two?” we actually have a very in-depth two- or
three-hour conversation about software security guided
by the Software Security Framework. You can think of this
intellectual framework as an archeology grid. We focus
on listening. We avoid leading questions, and we try not
to elicit responses that align directly with one of the 109
activities. Instead, we’ll say things like, “You have 9,000
developers on your staff; that’s a lot of developers. What
do you do to get those people to understand software se-
curity?” Then we listen, and, hopefully, they’ll talk about
training.

SOBEL: I’ve often wondered whether software develop-
ers learn how to apply these measures and assess their
software because of training activities targeted toward
that business. Or do businesses have to train because their
software developers haven’t acquired the skills they need

There are no value judgments in
the BSIMM. Instead, we focus on
observation.

51SEPTEMBER 2010

through whatever program they went through to get their
degrees?

McGRAW: Frankly, I don’t think that academia does a
very good job of teaching students how to develop code
in the first place, much less secure code. Computer sci-
ence curricula focus on theory, how compliers work,
operating systems, and maybe some data structures and
programming languages. They aren’t, by and large, about
large-scale software engineering.

I’ve visited college campuses all over the world, and I
give many talks every year to academics. Almost without
fail, when I go to a department and I find out who’s teach-
ing software engineering, sadly they tend to be the weakest
members of the faculty.

I think that’s terrible. I wish it weren’t the case, and I’d
love to pretend that it’s not, but it just is. As I have said
before, as a discipline, software engineering is lacking.
I think that security can help inject some reality, some
importance, and some reasonable activity into software
engineering. Maybe revitalize the field. To some extent,
we’ve already seen that beginning to happen.

The question is whether or not we should count on aca-
demia to teach software security, and the answer is very
complicated. There are a number of programs that do in
fact pay some attention to that. On page 98 of Software
Security, there’s a list of universities that I think are doing
a particularly good job with that.

On the other hand, there are thousands of developers
who write code who may not even have a computer sci-
ence degree. Maybe they learned how to program in a
different way. All those people need to be confronted so
that they think about software security. Training can help
with that, but there’s a big difference between training
and education.

We look to academia to do education, but we look to
our professional workplace to do training. And training
requires an education. You have to know how to learn;
you have to know how to pay attention and sit in class
and absorb concepts. In my view, that’s what academia
ought to be doing: teaching people how computers work
and paying less attention to the skill and craft that is writ-
ing code.

Then we have to pick up where education leaves off,
providing professional training, mentoring, and getting
people to understand security in their everyday job as
software professionals. There are many ways to do that,
including instructor-led training and computer-based
training. Another thing is actually having an interactive
development environment such as Eclipse tell you when
you’re making a mistake.

There are static analysis tools that will tell you when
you made a mistake at build time. Maybe a week later,
you’ll be told, “You shouldn’t have done it this way.” But we

need to tighten that loop so that we have instantaneous,
on-time training. Some of our customers have been asking
for that recently, and it’s something that we’ve definitely
been pursuing at Cigital.

It’s a big problem. This involves a lot of people. If you
add up the number of developers in the 30 firms included
in our study, it’s a very large number of people who are
expected to know something about software security
(141,715 people, in fact).

SOBEL: I’ve been interested in the divide that exists be-
tween businesses and academics. Do businesses need to
play a more active role in getting academic institutions to
teach more of what they need, or is it that academics resist
change overall? What has your experience been?

McGRAW: I rue the day that computer science becomes
some kind of a certification program for Microsoft-
certified engineers. That would be a complete disaster for
the economy and for the world. Instead, it’s much better
to learn how to think, how to read, how to design, how to
elicit requirements, and even some people skills such as
how to work in a group (which is tough for some geeks).
These kinds of skills are much more important to the
future career of a software professional than avoiding,
say, certain constructs in C.

Perhaps we should just scrap C and come up with a lan-
guage that doesn’t suck from a security perspective—that
doesn’t have literally thousands of things that you can
screw up. It’s a tricky issue. Perhaps some do not agree
with my opinion. My undergraduate degree was in phi-
losophy, and all I learned to do was read, write, and think. I
didn’t learn anything at all about coding when I was getting
my philosophy degree. But I’ve been coding since I was 16.

So the question is, do you actually go to school to learn
how to code? I didn’t. Many people I know who are pro-
fessional developers didn’t either. What does that mean?
These are tricky issues. While I don’t have a perfect answer,
I certainly have my opinions.

SOBEL: In your experience with the different businesses
you’ve consulted with on security issues, what has sur-
prised you the most? Is it the total lack of security—not
even understanding what is basic or necessary?

McGRAW: The most surprising thing I have come to real-
ize is that developers actually want to do the right thing,

Security can help inject some reality,
some importance, and some reasonable
activity into software engineering.

COVER FE ATURE

COMPUTER 52

for the most part. They actually care professionally about
building software that works. Good code. Instead of saying,
“Your code is terrible and that’s the ugliest piece of crap
I’ve ever seen,” you say, “If you do it this way, it’s better
because of security.” Then you get a lot further.

Security people have always had the same trouble
that the political left tended to have in the 1980s. That
is, pointing fingers and saying, “That’s unfair and that’s
broken,” but not actually offering any advice about how
to fix the problem. The time has come to tell developers
constructively how to build code properly instead of
pointing fingers and saying that something was done
wrong.

Among the many books I have written, about one-half
are “bad guy books,” so to speak. Books like Java Security,
Exploiting Software, and Exploiting Online Games are about
how things break. You might not be surprised to know
that those books outsell the “good guy” books about four
to one. If you want to make money writing security books,
definitely write bad guy books. This is due to what I call
the NASCAR effect. People like to watch cars crash, not
watch them drive around the track in circles, or go to a car
architecture course.

The question is whether we need to teach all developers
the attacker’s perspective. Everyone agrees that we need to
teach security people and security analysts the attacker’s
perspective. We must talk about attacks explicitly, clearly,
and loudly. We can’t just classify it and pretend it doesn’t
exist. As we all know, what happened in the past 10 years
politically leads to incredibly boneheaded approaches to
security. We have to talk about how things break, but the
question is whether developers need to do that.

Developers love entertainment just like any other
human, and they’re susceptible to the NASCAR effect. If
you set up a training class that says we’ll show you how
to attack code, they’re going to love, it. But the question is
whether or not it actually will help them in their job.

Based on conversations with Steve Lipner during the
past year or so, I’ve changed my position on that. I used
to be adamant about teaching all developers how stuff
breaks. Now I’m much more in-tune with defensive pro-
gramming—how to do it right—teaching the breaking
stuff only to the security professionals. That’s a pretty big
change in my own philosophy, and that came as a real sur-
prise. Although I’m the guy who wrote Exploiting Software
in 2004, I have a different view six years later.

SOBEL: Whenever I read something like that, I always
wonder whether I’m encouraging individuals to misbehave.

McGRAW: Some people are going to misbehave, and we
just have to face the fact that human nature is what it is. I
love talking to the press about some of these attacks. The
latest flurry of press coverage has been about using social
networking to carry out attacks—spear fishing, figuring
out your targets, and then maybe even depositing per-
sistent malicious code. These guys say social networking
leads to hacking.

If you go back about 100 years or so and look at the early
days of the telephone, you’ll see the exact same phenom-
enon in the press. “Telephone Leads to Murder.” Turns out
this person called up his victim and asked him to appear
at the murder site before killing him. Now we would just
say, “Telephone murder? That’s ridiculous. Everybody has
telephones.” Now we’re in the era of social networking and
of this computer phenomenon, and we’re still talking about
cybercrime as if it’s not just crime.

SOBEL: What do you believe is our biggest vulnerability in
software assurance from a business standpoint?

McGRAW: We still have a long way to go in convincing
some organizations that the risk-management tradeoffs
that they’re making are inappropriate. Some people still
tend to focus more attention on features and functions and
getting software out the door quickly than thinking about
what a bad person might do to make software misbehave.

Part of that has to do with talking about the problem
and showing people what can actually happen without
too much hyperbole. That’s tough for security people to
do. Security people like to pretend to be mysterious and
that this is all some sort of very hush-hush rocket science.
Frankly, that’s just bull feathers.

These attacks are programs. They misbehave in the
way that programs always misbehave. It just turns out
that the attacker’s intention is the problem. Rather than
trying to put some sort of a magical thing between
the bad people and the broken stuff, we need to think
through robustness, design, architecture, and secure
coding while we’re building systems. The perimeter view
of network security is both quaint and ridiculous, and
those days are long gone.

SOBEL: Speaking of days gone by, where do you think
software assurance for businesses is going to be in the
year 2020?

McGRAW: I’m not a very good predictor of the future. I
know that if I make some predictions now, somebody
might dig this up in 2020 and have a good laugh. So I’m
going to equivocate, hedge, and avoid the question instead.

We need to think through robustness,
design, architecture, and secure
coding while we’re building systems.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest peer-

reviewed developments in pervasive, mobile, and

ubiquitous computing. Topics include hardware

technology, software infrastructure, real-world

sensing and interaction, human-computer

interaction, and systems considerations, including

deployment, scalability, security, and privacy.

Author guidelines:

www.computer.org/mc/pervasive/author.htm

 Call
 for Articles

Further

details:

pervasive@

computer.org

www.

computer.

org/pervasive

53SEPTEMBER 2010

We have made great progress in software security since
I got started in the field around 1995. Back then, there were
a few good books like Maury Gasser’s on system security,
and there were some good papers like “Smashing the Stack
for Fun and Profit” and Bishop’s and Dilger’s work on race
conditions. Some people were working on software secu-
rity, but it was a really tiny field. At the time, you couldn’t
convince anybody that it was important to be working on
it. If you look now, I think everybody agrees that we should
be doing software security—they’re just not sure how we
should be doing it.

By analogy, we’ve reached a stage comparable to the way
a 35-year-old thinks about retirement. Someone that age
might wake up in the middle of the night and think, “Gosh,
I wonder if I’m saving enough for retirement.” But then he
goes back to sleep and forgets about it for another 10 years.
With regard to software security, right now people are wor-
ried. They know they’re supposed to be doing something,
but they’re just not sure what that something is.

Models like the BSIMM and news stories about how
the Chinese hacked Google are helpful in getting people
to understand the magnitude of this problem that we
face collectively, and the kind of risk that we’ve painted
ourselves into the corner with. But I am optimistic that
we’re making great progress. I don’t see any reason why
that progress would just stop dead next year. Models like
the BSIMM that allow us to measure are very helpful. To
paraphrase Lord Kelvin, “If you can’t measure it, how can
you do science?”

This notion of actually gathering data and talking about
what works instead of just listening to the most vociferous
opinion is what we’ll see next in software security. I also
think that perhaps we’ll make some progress in program-
ming languages as well. We have built a lot of incredibly
silly things into what we use to build software every day.
In some sense, we haven’t quite reached the Industrial
Revolution. Many people talk about component-based soft-
ware design, but there’s an awful lot of bespoke software
development these days.

That’s kind of like building a bicycle from scratch with a
machine tool and metal parts. There’s no standard for how
big the wheels should be, so we end up with some bicycles
like those old-fashioned ones that have a gigantic front
wheel and a little wheel behind (which turned out to be a
pretty stupid design). We still have those big-wheel bicycles
in software today. Hopefully, in 10 years we’ll make some
progress toward eradicating some of those problems and
coming up with better languages.

SOBEL: Is there anything that you would like to add to our
conversation?

McGRAW: The last thing I would like to say is that I’m op-
timistic, and I think we’re making progress. As strange

as it may seem, that’s kind of a minority position among
security people, who tend to be really cynical, curmud-
geonly, grumbly, grumpy people because we’re working
on this stuff all day. If we retain our optimism and look
back at where we’ve come from over the past 10 years, we
can all be proud of some of the changes that we’ve made.
We can look forward to making an equal amount of im-
portant change in the future—building systems that are
more secure so that when we rely on them, they deserve
to be relied on.

Ann E.K. Sobel, a member of Computer’s editorial board,
is an associate professor of computer science and software
engineering at Miami University. She received a PhD in
computer science from Ohio State University. Contact her
at sobelae@muohio.edu.

Gary McGraw, Chief Technology Officer of Cigital, is the
author of Software Security (Addison-Wesley, 2006) and
11 other best-selling software security books. He received
a BA in philosophy from the University of Virginia and a
dual PhD in computer science and cognitive science from
Indiana University. McGraw served on the IEEE Computer
Society Board of Governors and produces the monthly
Silver Bullet Security Podcast for IEEE Security & Privacy
magazine (syndicated by informIT). Contact him at gem@
cigital.com.

