
© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. (IEEE

Electronic Information Dissemination, section 8.1.10, pp. 44-45)

For more information, please see http://www.ieee.org/portal/pages/about/documentation/copyright/polilink.html

Adopting a Software Security Improvement Program

Dan Taylor and Gary McGraw

http://www.computer.org/security/

Vol. 3, No. 3
May/June 2005

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons

copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit

permission of the copyright holder.

Building Security In
Editor: Gary McGraw, gem@cigital.com

other technical decisions only exac-
erbate the problem. Regardless of
these issues, leading software shops
(including Microsoft) are working
hard to improve the way they build
security into their products.

Software security initiatives have
proven beneficial for those organiza-
tions that have implemented them.
Such initiatives involve the adoption
and rollout of the kinds of best prac-
tices described in previous install-
ments of this department (see the
“Software security best practices”
sidebar). This article describes an ap-
proach that works, with an emphasis
on business process engineering that
might be unfamiliar to technical
practitioners. By following some
commonsense steps, a software secu-
rity improvement program has a
greater chance of achieving its ulti-
mate goal: software security that
makes business sense.

The business climate
Market forces continue to pressure IT
organizations to become as efficient
as possible to stay competitive. As a
cost-cutting maneuver during the re-
cent economic downturn, many
companies reorganized their IT orga-
nizations and cut them to the bone.
With no obvious cost cuts remaining,
current efficiency efforts focus on
improving productivity. By harness-

ing this productivity momentum, ef-
forts to formalize software process
improvement programs and achieve
productivity goals are flourishing.

Any organization can initiate
change, but few can sustain it over
time. So how can we define and
manage a change program in today’s
dynamic business environment? How
can we prepare for and take advan-
tage of natural change? How can we
build a sustainable improvement
plan that’s flexible enough to adapt
over time?

The first priority is to align soft-
ware development and operational
processes with strategic business ob-
jectives. Technologists sometimes
forget why they’re doing what
they’re doing, yet most software
today is created to service business.
Those technologists who under-
stand that security is a risk manage-
ment process that unfolds over time
will have little trouble understanding
that business concerns are a funda-
mental driver in balancing and refin-
ing security best practices.

The software security best prac-
tices we’ve covered are process
agnostic and can thus be adopted re-
gardless of an organization’s soft-
ware development methodology.
Because every organization is differ-
ent, a software security improve-
ment program involving these prac-

tices must be tailored to the given
business and technical situation.

A well-defined roadmap lays out
the specifics of how best to deploy
software security best practices given
a particular organization’s approach
to building software. It helps priori-
tize change to assure that we first ad-
dress only those program initiatives
that provide the highest value or
quickest return. This type of roadmap
should follow five basic steps:

• Build a tailored plan. Recognize
potential dependencies between
various initiatives and plan accord-
ingly. Keep in mind how your or-
ganization develops software and
determine the best way to gradu-
ally adjust what you’re doing to
fold in security best practices.

• Roll out individual best-practice initia-
tives carefully. Establish champions
to drive and take ownership of
each initiative, coaching and men-
toring as needed. Run a successful
pilot in part of your company be-
fore attempting to spread best
practices far and wide.

• Train your people. Developers and
architects remain blithely unaware
of security and the critical role
they play in it, making training and
mentoring a necessity.

• Establish a metrics program. Apply a
business-driven metrics scorecard
to monitor progress and assess suc-
cess. Metrics and measures—even
relative metrics based on risk over
time or business metrics such as
maintenance budget—are critical
to making forward progress in any
large organization.

• Establish and sustain a continuous im-
provement capability. Create a situa-
tion in which you can sustain con-

DAN TAYLOR

AND GARY

MCGRAW

Cigital

A
dopting software security in a large organization is

a challenge that takes careful planning. Cultural

change of any kind is difficult in big companies,

and the potential minefields surrounding software

process, development tools, programming language, platform, and

Adopting a Software Security
Improvement Program

88 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 89

tinuous improvement by measuring
results and periodically refocusing
attention on the weakest aspects of
your software security program.

The goal of the roadmap is to build
and deploy an approach focused on
enabling organizational change.
When applied well, it will provide
the building blocks for creating and
sustaining change over time.

Building blocks
of change
Every cultural change program re-
quires buy-in from both manage-
ment and tactical technical staff;
improvement programs will fail if
either group is left out or underem-
phasized. Every entity within an or-
ganization has a different sensitivity
toward change, and these differ-
ences must be understood and ac-
counted for because they deeply
affect expectations. Disconnects in
expectation could eventually end up
forcing an organization into a least-
common-denominator approach
that lacks impact.

Keeping things simple helps
people understand and support a
program. Breaking down a major
change program into logical seg-
ments with specific deliverables tied
to each segment (or initiative) is a
proven tactical approach. In prac-
tice, we find that a reasonable time
range for any given initiative is three
to four months. This type of step-
wise approach minimizes risk while
enabling an organization to test the
waters as it gauges receptivity to
change.

In terms of breaking down a pro-
gram, we recommend a multiphased
planning approach that accounts for
the dependencies among related ini-
tiatives. Dependencies can help
when adjusting the general se-
quence to account for those items
likely to require a dependent task
prior to being kicked off—building
a set of measurement tools, for ex-
ample, will directly depend on the
software development methodology

used. If an early segment includes se-
lecting or adopting a given method-
ology, tool choice issues should be
deferred to a later segment because
they require an in-place methodol-
ogy to be effective.

A clear sequence of initiatives
helps an organization achieve a
specific level of adoption, test the
waters, measure and validate ac-
complishments, and set the stage
for the next level. We follow a six-
phase change program maturity-
path sequence.

Phase 1
The first phase, stop the bleeding, is
targeted at known problem areas in
software development programs. If
particular security bugs, such as
buffer overflows, cause the biggest
problem, a good phase 1 approach
might involve the adoption of a
code-scanning tool and an associ-
ated process for its use. If tens of
thousands of security-critical appli-

cations have unknown risks, a good
phase 1 approach might be to per-
form a high-level risk analysis of the
application portfolio and organize
the applications in order of critical-
ity/security exposure so that the
plan addresses those applications
most at risk first.

Phase 2
The second phase, harvest the low-
hanging fruit, focuses on finding the
quick wins that are instrumental in
getting buy-in from the organiza-
tion and in helping a program build
momentum. Both phase 1 and phase
2 are good barometers for determin-
ing the organization’s receptivity to-
ward change.

Phase 3
The third phase, establish a foundation,
is about setting up components that
provide building blocks for future
initiatives. Typical tasks in this phase
include creating change control pro-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 89

Software security best practices

Asuccessful software security improvement program is based on adopting best practices like

the ones shown with arrows in Figure A. These best practices are applied to software artifacts

created during the software development process, but they are “process agnostic” because they

don’t assume that any particular methodology is being used. An overview of all software devel-

opment life cycle best practices appears in an earlier installment of this department.1

Reference
1. G. McGraw, “Software Security,” IEEE Security & Privacy, vol. 2, no. 2, 2004, pp. 80–83.

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure A. Software development life cycle. We can apply several software security
best practices (the arrows) throughout the SDLC, given a set of common software
artifacts (shown along the bottom).

Building Security In

grams, building a root cause analysis
function, and setting up critical
feedback loops. One such feedback

loop can identify any security prob-
lems discovered via best practices
such as code review and cycle them
back into training (to teach develop-
ers how to avoid common security
problem in the first place).

Phase 4
The fourth phase, craft core competen-
cies, is driven by an organization’s
current as well as desired strengths.
If an organization has a strong repu-
tation for creating solid architecture
documentation, for example, it will
likely be more receptive to architec-
tural risk analysis than it is to abuse
case development. This phase ex-
plicitly involves the adoption of
software security best practices in a
manner tailored to the organiza-
tion’s strengths.

Phase 5
The fifth phase, develop differentiators,
emphasizes and highlights those at-
tributes and characteristics not eas-
ily duplicated by competitors, and
that thus differentiate the organiza-
tion from competitors. Measure-
ment and metrics systems put in
place with a software security im-
provement program can demon-
strate how well things are going
from a security perspective, which
can serve as an important differen-
tiator from the competition.

Phase 6
The final phase, build out the “nice to
haves,” involves adopting those ca-
pabilities that aren’t necessarily

aligned to a given strategic business
objective, but that bring value by
achieving some improvement in

productivity. We leave them last for
obvious reasons.

Building an
improvement program
Once we have a specific and action-
able plan, a pragmatic approach
should drive each initiative. A clear
understanding of what will be built
during each part of the program,
who will own it, and how they will
build, deploy, and continue to im-
prove it over time is essential.

The general framework and plan
discussed earlier should include sev-
eral factors, including (but not lim-
ited to),

• tools,
• processes,
• decision criteria and associated

actions,
• templates,
• examples and blueprints,
• best practices,
• guidelines, and
• metrics and measures.

Several other drivers, including cur-
rent software architectures, security
policies and guidelines, and regula-
tory requirements, can also help
align the framework with the strate-
gic business direction.

The most important decision for
assuring success in a cultural change
program is the selection of champi-
ons—those individuals who will
build, deploy, drive, and own each
initiative going forward. Should an
initiative involve the adoption of sta-

tic analysis tools for code review, for
example, a champion well versed in
implementation-level security
analyses, the target language, and
how to effectively use source-code
analysis tools is vital. Ideally, such in-
dividuals won’t be “freshly trained”
in the area they’re meant to own;
rather, they should have a hand in de-
veloping the initiative and its com-
ponents. A champion must be moti-
vated, driven, and, most importantly,
supported by the management team.
They must also be good communi-
cators and possess a strong capability
to train and mentor others.

Establishing a
metrics program
Overstating the importance of
measurement and metrics is hard.
Measurement provides manage-
ment with critical insight into how
to support strategic decision-
making processes. Measures are
numeric values assigned to a given
artifact, software product, or
process, and a metric is a combina-
tion of two or more measures that
together provide some business-rel-
evant meaning. When considered
separately, for example, “lines of
code” and “number of security
breaches” are two distinct measures
that provide very little business
meaning because there’s no context
for their values. However, a metric
comprising “number of breaches”
per “lines of code” provides a much
more interesting relative value: we
can use it to compare and contrast a
given system’s security defect den-
sity against similarly sized systems
and thus provide management with
useful data for decision making.

Ideally, metrics and measures
focus on four primary areas: project,
process, product, and organization.
The first three are specific to a given
artifact or activity in a software de-
velopment effort, whereas the latter’s
purpose is to determine trends across
the three other areas.

Establishing a metrics capability is
a challenging undertaking. Early

90 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2005

A well-defined roadmap lays out the specifics

of how best to deploy software security best

practices given a particular organization’s

approach to building software.

Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 91

standard software process approaches
focused on sequentially building a
level of sufficiency in four areas in a
particular order: process, controls,
metrics, and improvement. Unfortu-
nately, following these basic steps in
the prescribed order implies that we
don’t address metrics until late in the
program. By then, it might be too late
because processes and controls put in
place early on might not be properly
designed to provide the kinds metrics
needed later. In such cases, some sig-
nificant rework might be required to
achieve business alignment. Conse-
quently, it’s now generally agreed that
measurement and analysis must be in-
cluded much earlier in the process de-
velopment model.

All metrics should render
decision criteria based on strategic
business objectives. For this reason,
business objectives must be articu-
lated first and used to guide the en-
tire program, from process and con-
trol development onward.

T he targeted end state for any im-
provement program (security or

otherwise) is a sustainable ability to
evolve and change with the business
climate. A critical foundation for
continuous improvement is intro-
spective in nature: each process must
be carefully analyzed, assessed with
respect to the need for change, ad-
justed as appropriate, and re-instan-
tiated after refreshing. This feedback
cycle is critical for ensuring that any
given initiative stays relevant.
Process for process’s sake is a well-
known pitfall that should be
avoided. Unfortunately, many orga-
nizations have a tendency to be-
come lazy and slip back into old
habits; control processes can help
counter this tendency.

A critical feature for the success
of continuous improvement in-
volves the periodic auditing and ex-
plicit reformulation of the organi-
zation’s strategic objectives to
ensure they haven’t changed too
much over time. If business needs

have moved far enough to push
processes and procedures off track,
then the entire software security
initiative must be reevaluated.

A critical challenge facing
software security today is the dearth
of experienced practitioners. Ap-
proaches that rely solely on appren-
ticeship as a method of propagation
are unlikely to scale quickly
enough; as the field evolves and es-
tablishes best practices, business
process engineering can play a
central role in encapsulating and
spreading this emerging discipline
more efficiently.

Dan Taylor is managing principal of
Cigital’s Productivity and Assurance

Consulting practice. He is an active
member of the American Society of
Quality and the Information Systems
Audit and Control Association. Taylor
has a BA in psychology and quantita-
tive analysis from Clark University and
an MBA in finance from Rutgers Uni-
versity. Contact him at dtaylor@
cigital.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

Ensure that your networks operate safely
and provide critical services even in the face of

attacks. Develop lasting security solutions, with
this peer-reviewed publication.

Top security professionals in the field share
information you can rely on:

Wireless Security • Securing the Enterprise • Designing
for Security Infrastructure Security • Privacy Issues

• Legal Issues • Cybercrime • Digital Rights Management •
Intellectual Property Protection and Piracy • The Security

Profession • Education

Order your subscription today.

www.computer.org/security/

BE SECURE.

DON’T RUN THE RISK.

BE SECURE.

DON’T RUN THE RISK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

