
Building Security In
Editor: Gary McGraw, gem@cigital.com

evolves and establishes best practices,
knowledge management can play a
central role in encapsulating and
spreading the emerging discipline
more efficiently. This article is about
the kinds of security knowledge that
can provide a solid foundation for
software security practices.

Experience,
expertise,
and security
Knowledge is more than merely a list
of things we know or a collection of
facts. Simply put, information and
knowledge aren’t the same thing, and
it’s important to understand the dif-
ference. Knowledge is information in
context. A checklist of potential secu-
rity bugs in C and C++ is informa-
tion; that same information built into
a static analysis tool is knowledge.

Software security practitioners
place a premium on knowledge and
experience. In a field in which most
practitioners are still learning the ba-
sics (think checklists and basic cod-
ing rules), the value of master crafts-
men who have “been there, done
that,” learned several lessons the hard
way, and are able to transfer their ex-
perience to others is extremely high.

The bad news is that software se-
curity doesn’t have enough master
craftsmen to effectively apprentice
and train the world’s developers, ar-

chitects, and software security new-
bies. But the good news is that criti-
cal software security knowledge and
expertise can be compiled and
shared widely. This possibility yields
a potentially higher return than the
pervasive one-to-one method of
mentoring practiced today.
Through the aggregation of knowl-
edge from several experienced
craftsmen, knowledge management
can give a new software security
practitioner access to the knowledge
and expertise of all the masters, not
just one or two.

Software security knowledge is
multifaceted and applicable in di-
verse ways. As the software life
cycle unfolds, for example, we can
directly and dynamically apply se-
curity knowledge through the use
of knowledge-intensive best prac-
tices. During professional training
and resource development, we can
draw on it for pedagogical applica-
tion, and during academic training,
it can inform basic coding and de-
sign curricula.

Security knowledge:
A unified view
For reasons of clarity and ease of ap-
plication, we can organize security
knowledge according to the archi-
tecture introduced in the “Software
security unified knowledge archi-

tecture” sidebar. We start by group-
ing seven knowledge catalogs (prin-
ciples, guidelines, rules, attack pat-
terns, historical risks, vulnerabilities,
and exploits) into three knowledge
categories (prescriptive, diagnostic,
and historical), all described in more
detail in the sidebar.

Two of the seven catalogs are
likely to be familiar to software de-
velopers who possess even just a
passing familiarity with software se-
curity—vulnerabilities and exploits.
These catalogs have been in com-
mon use for years, and have even re-
sulted in collection and cataloging
efforts that serve the security com-
munity at large, including the CVE
and Bugtraq. Similarly, principles
(stemming from Jerome Saltzer and
Michael Schroeder’s seminal work1)
and rules (identified and captured in
static analysis tools such as ITS42) are
fairly well understood. More re-
cently identified knowledge catalogs
include guidelines (often built into
prescriptive frameworks for tech-
nologies such as .NET and J2EE),
attack patterns,3 and historical risks.
Together, these various knowledge
catalogs provide a basic foundation
for a unified knowledge architecture
that supports software security.

Security knowledge
and best practices
We can apply software security
knowledge at various stages
throughout the entire software de-
velopment life cycle (SDLC). One
effective way is through the use of
software security best practices.4

Rules, for example, are extremely
useful for static analysis and code in-
spection activities.

Software development processes

SEAN BARNUM

AND GARY

MCGRAW

Cigital

A
critical challenge facing software security today is

the dearth of experienced practitioners. Ap-

proaches that rely solely on apprenticeship as a

method of propagation won’t scale quickly

enough to address this burgeoning problem, so as the field

Knowledge for
Software Security

74 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

as diverse as the waterfall model,
IBM’s Rational Unified Process,
extreme programming, Agile, spiral
development, Capability Maturity
Model integration, and any num-
ber of other processes involve the
creation of a common set of software
artifacts (the most common artifact
being code). Figure 1 shows an en-
hanced version of the SDLC best
practices we’ve used as the back-
bone of this series. In the figure, we
identify the activities and artifacts
most clearly impacted by the

knowledge catalogs described here.
Let’s examine each knowledge

catalog and look at sample schemas
for tracking instances and some cor-
responding SDLC artifacts affected
by knowledge.

Principles
A principle is a statement of gen-
eral security wisdom derived from
experience. Although principles
exist at the philosophical level, they
stem from practitioners’ real-world
experience in building secure sys-

tems. Principles are useful for both
diagnosing architectural flaws in
software and practicing good secu-
rity engineering. A sample high-
level schema for a principle
includes title, definition (with a de-
scription, examples, and refer-
ences), related guidelines, and re-
lated rules. Relevant SDLC artifacts
include security requirements and
the software architecture.

Guidelines
A guideline is a recommendation

Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 75

The basic schema introduced in the main text describes a way

to organize and interrelate software security knowledge. Figure

A shows the seven distinct knowledge catalogs (the boxes) that we

divide into three knowledge categories.

The category prescriptive knowledge includes three knowledge

catalogs: principles, guidelines, and rules. These sets span a con-

tinuum of abstraction from high-level architectural principles at the

philosophical level (for example, the principle of least privilege1) to

very specific and tactical code-level rules (for example, “avoid the use

of the library function gets() in C”). Guidelines fall somewhere in

the middle of this continuum (for example, “make all Java objects

and classes final(), unless there’s a good reason not to”2). As a

whole, the prescriptive knowledge category offers advice for what to

do and what to avoid when building secure software.

The diagnostic knowledge category includes three knowledge

catalogs: attack patterns, exploits, and vulnerabilities. Rather

than prescriptive statements of practice, diagnostic knowledge

helps practitioners (including those working in operations) rec-

ognize and deal with common problems that lead to security

attacks. Vulnerability knowledge includes descriptions of

software vulnerabilities experienced and reported in real systems

(often with a bias toward operations). Exploits describe how

instances of vulnerabilities are leveraged into particular security

compromise for particular systems. Finally, attack patterns

describe common sets of exploits in a more abstract form that’s

applicable across multiple systems. Such diagnostic knowledge is

particularly useful in the hands of a security analyst, although its

value as a resource to be applied during development is consid-

erable (consider, for example, the utility of attack patterns to

abuse case development.)

The category historical knowledge includes the knowledge

catalog historical risks (and, in some cases, vulnerabilities such as

the collection in the CVE list; www.cve.mitre.org/). Rather than

derivations or abstractions, this catalog represents detailed

descriptions of specific issues uncovered in real-world software

development efforts; it must also include a statement of impact

on the business or mission proposition. As a resource, this

knowledge offers tremendous value in helping identify similar

issues in new software efforts without starting from scratch. It

also provides a continuing source for identifying new instances of

other knowledge catalogs described here, including principles,

guidelines, rules, vulnerabilities, and attack patterns.

References

1. J. Viega and G. McGraw, Building Secure Software: How to Avoid Security

Problems the Right Way, Addison-Wesley, 2001.

2. G. McGraw and E. Felten, Securing Java: Getting Down to Business with

Mobile Code, John Wiley & Sons, 1999.

Software security unified knowledge architecture

Attack pattern

Historical risk

Exploit

(Realized vulnerability)

Guideline

Principle Vulnerability

Rule

1

1

*

**

*

*

*

*

*

*

** *

*

Figure A. Software security knowledge objects and a basic
interrelating architecture.

Building Security In

for things to do or avoid during soft-
ware development, described at the

semantic level. Guidelines exist for a
specific technical context (for ex-

ample, J2EE, .NET, Linux kernel
modules, and so on), but they are
best enforced and evaluated through
human analysis. Guidelines can help
uncover both architectural flaws and
implementation bugs. A sample
high-level schema for a guideline
includes a context description (plat-
form, operating system, language,
and so on), title, type, objective, de-
velopment scenario, description,
related API, reference, related prin-
ciples, related rules, security re-
quirements, and software design.
The SDLC artifact most closely
aligned is code.

Rules
A rule is a recommendation for
things to do or to avoid during soft-
ware development, described at the
syntactic level. Rules can be veri-
fied through lexical scanning or
constructive software parsing
(source or binary); they exist for

76 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2005

Figure 1. The software development life cycle. Mapping software security knowledge
catalogs to various software artifacts and software security best practices shows us how
various knowledge catalogs can be applied throughout the SDLC.

Requirements
and use cases

Code Field
feedback

Principles Rules

Guidelines Historical risks Vulnerabilities Exploits

Attack patterns

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Test
results

Test
plans

Design

To make the notion of knowledge catalogs concrete, let’s

examine two example entries from two different knowledge

catalogs.

Principle catalog
An entry in the principle catalog includes the principle and a

concrete example. The entry also includes references for those

accessing the entry.

Item:
Principle of Least Privilege

Description:
Every program and every user of the system should operate using

the least set of privileges necessary to complete the job. Primarily,

this principle limits the damage that can result from an accident or

error. It also reduces the number of potential interactions among

privileged programs to the minimum for correct operation, so that

unintentional, unwanted, or improper uses of privilege are less

likely to occur. Thus, if a question arises related to misuse of a

privilege, the number of programs that must be audited is min-

imized. Put another way, if a mechanism can provide “firewalls,”

the principle of least privilege provides a rationale for where to

install the firewalls. The military security rule of “need to know” is

an example of this principle.

Concrete example:
A good software specific example is a mail server that accepts mail

from the Internet, and copies the messages into a spool directory;

a local server will complete delivery. It needs rights to access the

appropriate network port, to create files in the spool directory, and

to alter those files (so it can copy the message into the file, rewrite

the delivery address if needed, and add the appropriate “Received”

lines). It should surrender the right to access the file as soon as it

has completed writing the file into the spool directory, because it

does not need to access that file again. The server should not be

able to access any user’s files or any files other than its own config-

uration files.

References:
M. Bishop, Computer Security: Art and Science, Addison-Wesley, 2002.

J.H. Saltzer and M.D. Schroeder “The Protection of Information in Computer

Systems,” Proc. IEEE, vol. 9, no. 63, 1975, pp. 1278–1308.

J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems

the Right Way, Addison-Wesley, 2001.

Knowledge catalog examples

Building Security In

specific programming languages
and can help uncover implementa-
tion bugs. A rule’s high-level
schema includes a context descrip-
tion (platform, operating system,
language, and so on), ID, title, at-
tack category, vulnerability cate-
gory, location, description, method
of attack, solution, signature, exam-
ple, reference, related principles,
and related guidelines. The SDLC
artifact is code.

Attack patterns
An attack pattern is developed by
reasoning over large sets of software
exploits. Attack patterns help iden-
tify and qualify the risk that a given
exploit will occur in a software sys-
tem. They’re also useful for design-
ing misuse and abuse cases as well as
specific security tests. An attack
pattern’s high-level schema in-
cludes a context description (plat-
form, operating system, language,

and so on), title, attack category,
description, example, reference, re-
lated guidelines, and related rules.
SDLC artifacts include abuse cases,
software design documents, secu-
rity test plans (and tests), and pene-
tration tests.

Historical risks
A historical risk is a risk identified
in the course of an actual software
development effort. At its core, a
risk is a pairing of a condition and
an event, with a quantification of
the likelihood that it will occur and
the impact it could have. Historical
risks are good resources for early
identification of potential issues in a
software development effort; they
offer potential clues to effective
mitigations and ideas for improving
the consistency and quality of risk
management in the software devel-
opment process. A high-level
schema for a historical risk includes

title, type (business or technical),
subcategories (via taxonometric
sorting), author, owner, project,
risk status, likelihood, impact,
severity, risk context, risk descrip-
tion, realization indicators, impact
description, estimated impact date,
potential cost, contingency plans
and workarounds, related business
goals, related risks, related mitiga-
tions, and diagnostic methods.
SDLC artifacts include software ar-
chitecture, software design, test
plans, and fielded software.

Vulnerabilities
A vulnerability is the result of a
software defect that an attacker can
use to gain illegal access to—or
negatively affect the security of—a
computer system. A vulnerability’s
high-level schema includes a con-
text description (platform, operat-
ing system, language, and so on),
title, description, severity, vulnera-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 77

Rule Catalog
The rule catalog shows a rule for the particular system call.

Item:
Use of creat()

Context:
C/C++

Attack Category:
TOCTOU

Description:
The creat(char *pathname,mode_t theMode) function either

creates a new file or prepares to rewrite using pathname as the

filename. The call creat(theName,theMode) is equivalent to

open(theName,O_WRONLY | O_CREAT | O_TRUNC, theMode)

If the file exists, the length is truncated to zero and the mode and

owner are unchanged. This function is a problem, because it is

possible to unintentionally delete a file or enter a potentially unstable

race condition. creat() is vulnerable to TOCTOU attacks.

Using automated scanning tools, the existence of a call to this

function should be flagged regardless if a “check” function precedes it.

Method of Attack:
The creat() call is a “use” category call that when preceded

by a “check” category call can indicate a TOCTOU vulnerability.

Solution:
Consider using a safer set of steps for opening and creating files as

outlined in Building Secure Software. If this call must be used, create

a directory only accessible by the UID of the running program and

only manipulate files in that directory.

Signature:
Presence of the creat() function.

Code example:
In the following case, the contents of the file passed into the

creat function are destroyed.

char filename[] = “rightFile.txt”;

strcpy(filename,”wrongfile.txt”);

creat(filename,theMode);

If the results of the function call are used before completion,

then the results can also be unstable.

References:
J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems

the Right Way, Addison-Wesley, 2001, pp. 220–222.

Unix man page for creat()

Microsoft Developer Network Library (MSDN)

bility type, loss type, and reference.
SDLC artifacts include code, soft-
ware architecture, software design,
penetration tests, and the fielded
system.

Exploits
An exploit is a particular instance of
an attack on a computer system that
leverages a specific vulnerability or
set of vulnerabilities. An exploit’s
high-level schema includes a con-
text description (platform, operat-
ing system, language, and so on),
title, description, preconditions,
motivation, exposure type, exploit
code, blocking solution, and related
vulnerabilities. SDLC artifacts in-
clude penetration tests and the
fielded system.

Applications
The “Knowledge catalog exam-
ples” sidebar on p. 76 provides ex-
amples of items found in two
knowledge catalogs. Principles,
given their philosophical level of
abstraction, bring significant value
to early lifecycle activities, includ-
ing the definition of security re-
quirements, software architecture
risk analysis, and design reviews.
Rules, given their tactical, specific
syntactic nature, are primarily ap-
plicable during code review and are
particularly well-suited for inclu-
sion in a static analysis tool. This
opportunity for automation means
that rules have an implicit require-
ment for encapsulation in a deter-
ministic definition language so that
they can be consumed by auto-
mated code-scanning software.

The set of software security
knowledge catalogs we’ve identified
here offers an excellent foundation
for integrating security knowledge
into the full SDLC.

E fforts to identify and define
knowledge constructs for soft-

ware security are in their infancy,
but our hope is that a wider popula-
tion of thought leaders and key soft-

ware security practitioners will help
refine and validate this knowledge
architecture, build consensus, and
eventually move us toward stan-
dardization. Such discussion and
collaboration is critical to the suc-
cess of software security as a unified
practice. As we work to gain con-
sensus, we’ll continue to collect
real-world examples of content to
fill out the breadth and depth of the
catalogs identified here. We’ll also
work to identify further opportuni-
ties for directly applying these cata-
logs in the SDLC.

References
1. J.H. Saltzer and M.D. Schroeder,

“The Protection of Information in
Computer Systems,” Proc. IEEE,
vol. 9, no. 63, 1975, pp. 1278–1308.

2. J. Viega et al., “ITS4: A Static Vul-
nerability Scanner for C and C++
Code,” Proc. Ann. Computer Secu-
rity Applications Conf. (ASAC 02),
IEEE CS Press, 2000, pp. 257–269.

3. G. Hoglund and G. McGraw,
Exploiting Software, Addison-
Wesley, 2004.

4. G. McGraw, “Software Security,”
IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

Sean Barnum is Director of Knowledge
Management at Cigital. His technical
interests include software quality and
process improvement, software security,
risk management, knowledge architec-
ture, and collaborative technologies. Bar-
num has a BS in computer science from
Portland State University. He is a member
of the IEEE Computer Society and OASIS,
and is involved in numerous knowledge
standards-defining efforts. Contact him
at sbarnum@cigital.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

Building Security In

78 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2005

Ensure that your networks
operate safely and provide

critical services even in the face of
attacks. Develop lasting

security solutions, with this
peer-reviewed publication.

Top security professionals in
the field share information you can rely on:

• Wireless Security
• Securing the Enterprise
• Designing for Security

Infrastructure Security
• Privacy Issues
• Legal Issues
• Cybercrime
• Digital Rights Management
• Intellectual Property

Protection and Piracy
• The Security Profession
• Education

Order your subscription today.

www.computer.org/security/

BE
SECURE.

DON’T
RUN
THE
RISK.

BE
SECURE.

DON’T
RUN
THE
RISK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

