
Building Security In
Editor: Gary McGraw, gem@cigital.com

testing done properly goes deeper
than simple black-box probing on the
presentation layer (the sort performed
by so-called application security
tools)—and even beyond the func-
tional testing of security apparatus. 

Testers must use a risk-based ap-
proach, grounded in both the sys-
tem’s architectural reality and the at-
tacker’s mindset, to gauge software
security adequately. By identifying
risks in the system and creating tests
driven by those risks, a software se-
curity tester can properly focus on
areas of code in which an attack is
likely to succeed. This approach pro-
vides a higher level of software secu-
rity assurance than possible with
classical black-box testing. 

What’s so different
about security?
Software security is about making
software behave in the presence of a
malicious attack, even though in the
real world, software failures usually
happen spontaneously—that is,
without intentional mischief. Not
surprisingly, standard software test-
ing literature is only concerned with
what happens when software fails,
regardless of intent. The difference
between software safety and software
security is therefore the presence of
an intelligent adversary bent on
breaking the system.

Security is always relative to the
information and services being pro-
tected, the skills and resources of ad-
versaries, and the costs of potential
assurance remedies; security is an ex-
ercise in risk management. Risk
analysis, especially at the design level,
can help us identify potential secu-
rity problems and their impact.1

Once identified and ranked, soft-
ware risks can then help guide soft-
ware security testing.

A vulnerability is an error that an
attacker can exploit. Many types of
vulnerabilities exist, and computer
security researchers have created tax-
onomies of them.2 Security vulnera-
bilities in software systems range
from local implementation errors
(such as use of the gets() function
call in C/C++), through interpro-
cedural interface errors (such as a
race condition between an access
control check and a file operation),
to much higher design-level mis-
takes (such as error handling and re-
covery systems that fail in an insecure
fashion or object-sharing systems
that mistakenly include transitive
trust issues). Vulnerabilities typically
fall into two categories—bugs at the
implementation level and flaws at
the design level.3

Attackers generally don’t care
whether a vulnerability is due to a
flaw or a bug, although bugs tend to

be easier to exploit. Because attacks
are now becoming more sophisti-
cated, the notion of which vulnera-
bilities actually matter is changing.
Although timing attacks, including
the well-known race condition,
were considered exotic just a few
years ago, they’re common now.
Similarly, two-stage buffer overflow
attacks using trampolines were once
the domain of software scientists, but
now appear in 0day exploits.4 

Design-level vulnerabilities are
the hardest defect category to han-
dle, but they’re also the most preva-
lent and critical. Unfortunately, as-
certaining whether a program has
design-level vulnerabilities requires
great expertise, which makes finding
such flaws not only difficult, but par-
ticularly hard to automate.

Examples of design-level prob-
lems include error handling in ob-
ject-oriented systems, object sharing
and trust issues, unprotected data
channels (both internal and exter-
nal), incorrect or missing access con-
trol mechanisms, lack of auditing/
logging or incorrect logging, and or-
dering and timing errors (especially
in multithreaded systems). These
sorts of flaws almost always lead to
security risk.

Risk management
and security testing
Software security practitioners per-
form many different tasks to manage
software security risks, including

• creating security abuse/misuse
cases;

• listing normative security re-
quirements;

• performing architectural risk
analysis;

BRUCE POTTER

Booz Allen
Hamilton

GARY

MCGRAW

Cigital

S
ecurity testing has recently moved beyond the

realm of network port scanning to include probing

software behavior as a critical aspect of system be-

havior (see the sidebar). Unfortunately, testing

software security is a commonly misunderstood task. Security

Software Security Testing

32 PUBLISHED BY THE IEEE COMPUTER SOCIETY      ■ 1540-7993/04/$20.00 © 2004 IEEE      ■ IEEE SECURITY & PRIVACY 



Building Security In

• building risk-based security test
plans;

• wielding static analysis tools;
• performing security tests;
• performing penetration testing in

the final environment; and
• cleaning up after security breaches.

Three of these are particularly
closely linked—architectural risk
analysis, risk-based security test plan-
ning, and security testing—because a
critical aspect of security testing relies
on probing security risks. Last issue’s
installment1 explained how to ap-
proach a software security risk analy-
sis, the end product being a set of se-
curity-related risks ranked by business
or mission impact. (Figure 1 shows
where we are in our series of articles
about software security’s place in the
software development life cycle.)

The pithy aphorism, “software se-
curity is not security software” pro-
vides an important motivator for secu-
rity testing. Although security features
such as cryptography, strong authenti-
cation, and access control play a criti-
cal role in software security, security it-
self is an emergent property of the
entire system, not just the security
mechanisms and features. A buffer
overflow is a security problem regard-
less of whether it exists in a security
feature or in the noncritical GUI.
Thus, security testing must necessarily
involve two diverse approaches: 

1. testing security mechanisms to
ensure that their functionality is
properly implemented, and 

2. performing risk-based security
testing motivated by under-
standing and simulating the at-
tacker’s approach.

Many developers erroneously
believe that security involves only
the addition and use of various secu-
rity features, which leads to the in-
correct belief that “adding SSL” is
tantamount to securing an applica-
tion. Software security practitioners
bemoan the over-reliance on “magic
crypto fairy dust” as a reaction to this

problem. Software testers charged
with security testing often fall prey to
the same thinking.

How to approach
security testing
Like any other form of testing, secu-
rity testing involves determining
who should do it and what activities
they should undertake.

Who
Because security testing involves two
approaches, the question of who
should do it has two answers. Stan-
dard testing organizations using a
traditional approach can perform
functional security testing. For ex-
ample, ensuring that access control
mechanisms work as advertised is a
classic functional testing exercise. 

On the other hand, traditional
QA staff will have more difficulty
performing risk-based security test-
ing. The problem is one of expertise.
First, security tests (especially those
resulting in complete exploit) are
difficult to craft because the designer
must think like an attacker. Second,
security tests don’t often cause direct
security exploit and thus present an
observability problem. A security
test could result in an unanticipated
outcome that requires the tester to
perform further sophisticated analy-
sis. Bottom line: risk-based security
testing relies more on expertise and
experience than we would like.

How
Books like How to Break Software Secu-

rity and Exploiting Software help edu-
cate testing professionals on how to
think like an attacker.4,5 Nevertheless,
software exploits are surprisingly so-
phisticated these days, and the level of
discourse found in books and articles
is only now coming into alignment.

White- and black-box testing and
analysis methods both attempt to un-
derstand software, but they use differ-
ent approaches depending on
whether the analyst or tester has ac-
cess to source code. White-box
analysis involves analyzing and under-
standing source code and the design.
It’s typically very effective in finding
programming errors (bugs when au-
tomatically scanning code and flaws
when doing risk analysis); in some
cases, this approach amounts to pat-
tern matching and can even be auto-
mated with a static analyzer (the sub-
ject of a future installment of this
department). One drawback to this
kind of testing is that it might report a
potential vulnerability where none
actually exists (a false positive). Nev-
ertheless, using static analysis methods
on source code is a good technique
for analyzing certain kinds of soft-
ware. Similarly, risk analysis is a white-
box approach based on a deep under-
standing of software architecture.

Black-box analysis refers to ana-
lyzing a running program by probing
it with various inputs. This kind of
testing requires only a running pro-
gram and doesn’t use source-code
analysis of any kind. In the security
paradigm, malicious input can be
supplied to the program in an effort

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining risk-based security testing.



Building Security In

to break it: if the program breaks
during a particular test, then we
might have discovered a security
problem. Black-box testing is possi-
ble even without access to binary
code—that is, a program can be
tested remotely over a network. If
the tester can supply the proper input
(and observe the test’s effect), then
black-box testing is possible.

Any testing method can reveal
possible software risks and potential
exploits. One problem with almost
all kinds of security testing (regard-
less of whether it’s black or white
box) is the lack of it—most QA or-
ganizations focus on features and

spend very little time understanding
or probing nonfunctional security
risks. Exacerbating the problem, the
QA process is often broken in many
commercial software houses due to
time and budget constraints and the
belief that QA is not an essential part
of software development. 

An example: Java
Card security testing
Doing effective security testing re-
quires experience and knowledge.
Examples and case studies like the
one we present now are thus useful
tools for understanding the approach.

In an effort to enhance payment

cards with new functionality—such
as the ability to provide secure card-
holder identification or remember
personal preferences—many credit-
card companies are turning to multi-
application smart cards. These cards
use resident software applications to
process and store thousands of times
more information than traditional
magnetic-stripe cards.

Security and fraud issues are criti-
cal concerns for the financial institu-
tions and merchants spearheading
smart-card adoption. By developing
and deploying smart-card technol-
ogy, credit-card companies provide
important new tools in the effort to
lower fraud and abuse. For instance,
smart cards typically use a sophisti-
cated crypto system to authenticate
transactions and verify the identities
of the cardholder and issuing bank.
However, protecting against fraud
and maintaining security and privacy
are both very complex problems be-
cause of the rapidly evolving nature
of smart-card technology.

The security community has
been involved in security risk analy-
sis and mitigation for Open Platform
(now known as Global Platform, or
GP) and Java Card since early 1997.
Because product security is an essen-
tial aspect of credit-card companies’
brand protection regimen, these
companies spend plenty of time and
effort on security testing. One cen-
tral finding emphasizes the impor-
tance of testing particular vendor
implementations according to our
two testing categories: adherence to
functional security design and
proper behavior under particular at-
tacks motivated by security risks. 

The latter category, risk-based
security testing (linked directly to
risk analysis findings) ensures that
cards can perform securely in the
field even when under attack. Risk
analysis results can be used to guide
manual security testing. As an exam-
ple, consider the risk that, as de-
signed, the object-sharing mecha-
nism in Java Card is complex and
thus is likely to suffer from security-

34 IEEE SECURITY & PRIVACY      ■ SEPTEMBER/OCTOBER 2004

From outside→in to inside→out

Traditional approaches to computer and network security testing focus on network infra-

structure, firewalls, and port scanning. The notion is to protect vulnerable systems (and

software) from attack by identifying and defending a perimeter. In this paradigm, testing

focuses on an outside→in approach. One classic example is the use of port scanning with tools

such as nmap <http://www.insecure.org/nmap/> to probe network ports and see

what service is listening. Figure A shows a classic outside→in paradigm focusing on firewall

placement.

By contrast, we advocate an inside→out approach to security, whereby software inside the

LAN (and exposed on LAN boundaries) is itself subjected to rigorous risk management and

security testing.

Internet

Portable local area network

Public
network

Hardware, firewall,
usually part of a TCP/IP router

Secure private network
Public network

Figure A: The outside→in approach. A firewall protects a LAN by blocking various
network traffic on its way in; outside→in security testing involves probing the LAN
with a port scanner to see which ports are “open” and what services are listening
on those ports. A major security risk associated with this approach is that the
services traditionally still available through the firewall are implemented with
insecure software. 



Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 35

critical implementation errors on
any given card. Testing for this sort of
risk involves creating and manipulat-
ing stored objects where sharing is
involved. Given a technical descrip-
tion of this risk, building specific
probing tests is possible.  

Automating 
security testing
Over the years, we (the authors) have
been involved in several projects that
have identified architectural risks in
the GP/Java Card platform, sug-
gested several design improvements,
and designed and built automated
security tests for final products (each
of which had multiple vendors).

Several years ago, Cigital began
developing an automated security
test framework for GP cards built on
Java Card 2.1.1 and based on exten-
sive risk analysis results. The end re-
sult is a sophisticated test framework
that runs with minimal human inter-
vention and results in a qualitative se-
curity testing analysis of a sample
smart card.

The first test set, the functional
security test suite, directly probes
low-level card security functionality.
It includes automated testing of class
codes, available commands, and
crypto functionality. This test suite
also actively probes for inappropriate
card behavior of the sort that can lead
to security compromise. 

The second test set, the hostile
applet test suite, is a sophisticated
set of intentionally hostile Java
Card applets designed to probe
high-risk aspects of the GP on a
Java Card implementation.

Results: 
Nonfunctional security
testing is essential
Most cards tested with the automated
test framework pass all functional se-
curity tests, which we expect because
smart-card vendors are diligent with
functional testing (including security
functionality). Because smart cards
are complex embedded devices, ven-
dors realize that exactly meeting

functional requirements is an ab-
solute necessity for customers to ac-
cept the cards. After all, they must
perform properly worldwide.

However, every card submitted to
the risk-based testing paradigm ex-
hibited some manner of failure when
tested with the hostile applet suite.
Some failures pointed directly to crit-
ical security vulnerabilities on the
card; others were less specific and re-
quired further exploration to deter-
mine the card’s true security posture.

As an example, consider that risk
analysis of Java Card’s design docu-
ments indicates that proper imple-
mentation of atomic transaction
processing is critical for maintaining
a secure card. Java Card has the capa-
bility of defining transaction bound-
aries to ensure that if a transaction
fails, data roll back to a pre-transac-
tion state. In the event that transac-
tion processing fails, transactions can
go into any number of possible states,
depending on what the applet was
attempting. In the case of a stored-
value card, bad transaction process-
ing could allow an attacker to “print
money” by forcing the card to roll
back value counters while actually
purchasing goods or services.

When creating risk-based tests to
probe transaction processing, we di-
rectly exercised transaction-process-
ing error handling by simulating an
attacker attempting to violate a
transaction—specifically, transac-
tions were aborted or never commit-
ted, transaction buffers were com-
pletely filled, and transactions were
nested (a no-no according to the Java
Card specification). These tests were
not based strictly on the card’s func-
tionality—instead, security test en-
gineers intentionally created them,
thinking like an attacker given the
results of a risk analysis.

Several real-world cards failed
subsets of the transaction tests. The
vulnerabilities discovered as a result
of these tests would let an attacker
terminate a transaction in a poten-
tially advantageous manner, a critical
test failure that wouldn’t have been

uncovered under normal functional
security testing. Fielding cards with
these vulnerabilities would let an at-
tacker execute successful attacks on
live cards issued to the public. Be-
cause of proper risk-based security
testing, the vendors were notified of
the problems and corrected the code
responsible before release.

T here is no silver bullet for soft-
ware security; even a reasonable

security testing regimen is just a start.
Unfortunately security continues to
be sold as a product, and most defen-
sive mechanisms on the market do
little to address the heart of the prob-
lem, which is bad software. Instead,
they operate in a reactive mode:
don’t allow packets to this or that
port, watch out for files that include
this pattern in them, throw partial
packets and oversized packets away
without looking at them. Network
traffic is not the best way to approach
this predicament, because the soft-
ware that processes the packets is the
problem. By using a risk-based ap-
proach to software security testing,
testing professionals can help solve
security problems while software is
still in production. 

References
1. D. Verndon and G. McGraw, “Risk

Analysis in Software Design,” IEEE
Security & Privacy, vol. 2, no. 4,
2004, pp. 79–84.

2. C.E. Landwehr et al., A Taxonomy
of Computer Program Security Flaws,
with Examples, tech. report NRL/
FR/5542—93/9591, Naval
Research Laboratory, Nov. 1993. 

3. G. McGraw, “Software Security,”
IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

4. G. Hoglund and G. McGraw,
Exploiting Software, Addison-Wes-
ley, 2004.

5. J. Whittaker and H. Thompson,
How to Break Software Security,
Addison-Wesley, 2003.

Bruce Potter is a senior associate with



Building Security In

Booz Allen Hamilton. He is also the
founder of the Shmoo Group of security
professionals. His areas of expertise
include wireless security, large-scale net-
work architectures, smartcards, and pro-
motion of secure software engineering
practices. Potter coauthored the books
802.11 Security (O’Reilly and Associates,
2003) and Mac OS X Security (New Rid-
ers, 2003); he’s currently coauthoring
Master FreeBSD and OpenBSD Security
(O’Reilly and Associates, summer 2004).
He was trained in computer science at the
University of Alaska, Fairbanks.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. He serves on the technical advi-
sory boards of Authentica, Counterpane,
Fortify, and Indigo. He also is coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

36 IEEE SECURITY & PRIVACY      ■ SEPTEMBER/OCTOBER 2004



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile (Apple RGB)
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


