
Building Security In
Editor: Gary McGraw, gem@cigital.com

knowledge about vulnerabilities,
threats, impacts, and probability.

Established risk-analysis method-
ologies possess distinct advantages
and disadvantages, but almost all of
them share some good principles as
well as limitations when applied to
modern software design. What sepa-
rates a great software risk assessment
from a merely mediocre one is its
ability to apply classic risk definitions
to software design and then generate
accurate mitigation requirements. A
high-level approach to iterative risk
analysis should be deeply integrated
throughout the software develop-
ment life cycle.1 In case you’re keep-
ing track, Figure 1 shows you where
we are in our series of articles about
software security’s place in the soft-
ware development life cycle.

Traditional
terminology
Example risk-analysis methodolo-
gies for software usually fall into two
basic categories: commercial (in-
cluding Microsoft’s STRIDE, Sun’s
ACSM/SAR, Insight’s CRAMM,
and Cigital’s SQM) and standards-
based (from the National Institute of
Standards and Technology’s ASSET
or the Software Engineering Insti-
tute’s OCTAVE). An in-depth
analysis of all existing methodologies
is beyond our scope, but we’ll look at

basic approaches, common features,
strengths, weaknesses, and relative
advantages and disadvantages.

As a corpus, “traditional” method-
ologies are varied and view risk from
different perspectives. Examples of
basic approaches include

• financial loss methodologies that
seek to provide a loss figure to bal-
ance against the cost of imple-
menting various controls;

• mathematically derived “risk rat-
ings” that equate risk with arbi-
trary ratings for threat, probability,
and impact; and

• qualitative assessment techniques
that base risk assessment on anec-
dotal or knowledge-driven factors.

Each basic approach has its dis-
tinctly different merits, but they al-
most all share some valuable concepts
that should be considered in any risk
analysis. We can capture these com-
monalities in a set of basic definitions:

• The asset, or object of the protec-
tion efforts, can be a system com-
ponent, data, or even a complete
system.

• Risk, the probability that an asset
will suffer an event of a given nega-
tive impact, is determined from var-
ious factors: the ease of executing an
attack, the attacker’s motivation and

resources, a system’s existing vul-
nerabilities, and the cost or impact
in a particular business context.

• The threat, or danger source, is in-
variably the danger a malicious
agent poses and that agent’s moti-
vations (financial gain, prestige, and
so on). Threats manifest themselves
as direct attacks on system security.

• A vulnerability is a defect or weak-
ness in system security procedure,
design, implementation, or inter-
nal control that an attacker can
compromise. It can exist in one or
more of the components making
up a system, even if those compo-
nents aren’t necessarily involved
with security functionality. A given
system’s vulnerability data are usu-
ally compiled from a combination
of OS- and application-level vul-
nerability test results, code reviews,
and higher-level architectural re-
views. Software vulnerabilities
come in two basic flavors: flaws
(design-level problems) or bugs
(implementation-level problems).
Automated scanners tend to focus
on bugs, since human expertise is
required for uncovering flaws.

• Countermeasures or safeguards are the
management, operational, and
technical controls prescribed for an
information system that, taken to-
gether, adequately protect the sys-
tem’s confidentiality, integrity, and
availability as well as its informa-
tion. For every risk, a designer can
put controls in place that either
prevent or (at a minimum) detect
the risk when it triggers.

• The impact on the organization,
were the risk to be realized, can be
monetary or tied to reputation, or
it might result in the breach of a
law, regulation, or contract. With-

DENIS VERDON

Fidelity
National
Financial

GARY

MCGRAW

Cigital

R
isk analysis is often viewed as a “black art”—part

fortune telling, part mathematics. Successful risk

analysis, however, is nothing more than a busi-

ness-level decision-support tool: it’s a way of gath-

ering the requisite data to make a good judgment call based on

Risk Analysis
in Software Design

32 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

out a quantification of impact,
technical vulnerability is hard to
handle—especially when it comes
to mitigation activities.

• Probability is the likelihood that a
given event will be triggered. It is
often expressed as a percentile, al-
though in most cases, probability
calculation is extremely rough.

Although they start with these
basic definitions, risk methodolo-
gies usually diverge on how to arrive
at specific values. Many methods
calculate a nominal value for an in-
formation asset, for example, and at-
tempt to determine risk as a func-
tion of loss and event probability.
Others rely on checklists of threats
and vulnerabilities to determine a
basic risk measurement.

Example of
a risk calculation
One classic risk-analysis method ex-
presses risk as a financial loss, or an-
nualized loss expectancy, based on
the following equation:

ALE = SLE × ARO,

where SLE is the single loss ex-
pectancy, and ARO is the annualized
rate of occurrence (or the predicted
frequency of a loss event happening).

Let’s consider an Internet-based
equities trading application with a
vulnerability that could result in
unauthorized access (the implication
being that unauthorized stock trades
can be made). Assume a risk analysis
determines that middle- and back-
office procedures will catch and
negate any malicious transaction
such that the loss associated with the
event is simply the cost of backing
out of the trade. We’ll assign a cost of
$150 for any such event, so SLE =
$150. With an ARO of just 100 such
events per year, the cost to the com-
pany (or ALE) will be $15,000.

The resulting dollar figure pro-
vides no more than a rough yard-
stick, albeit a useful one, for deter-
mining whether to invest in fixing
the vulnerability. Of course, for our

fictional equities trading company, a
$15,000 annual loss might not be
worth getting out of bed for (typi-
cally, a proprietary trading com-
pany’s intraday market risk dwarfs
such an annual loss figure).

Other methods take a more qual-
itative route. In the case of a Web
server providing a company’s face to
the world, the Web site’s defacement
might be difficult to quantify as a fi-
nancial loss (although some studies
indicate a link simply between secu-
rity events and negative stock-price
movements2). In cases in which “in-
tangible assets” are involved (such as
reputation), qualitative risk assess-
ment might be a more appropriate
way to capture the loss.

Regardless of the technique used,
most practitioners advocate a return
on investment study to determine
whether a given countermeasure is
cost-effective for achieving the desired
security goal. Adding applied cryp-
tography to an application server via
native APIs without the aid of dedi-
cated hardware acceleration might be
cheap in the short term, for example,
but if it results in a significant loss in
transaction volume throughput, a bet-
ter ROI might come from investing
up front in crypto acceleration hard-
ware. Interested organizations should
adopt the risk-calculation methodol-
ogy that best reflects their needs.

Common themes
Most risk-analysis process descrip-
tions emphasize identification, rank-

ing, and mitigation as continuous
processes and not just a single step to
be completed at one stage of the de-
velopment life cycle. Risk-analysis
results and risk categories tie in with
both requirements (early in the life
cycle) and testing (where developers
can use results to define and plan par-
ticular tests).

Because it’s a specialized subject,
risk analysis is not always best per-
formed solely by the design team.
Rigorous risk analysis relies heavily
on an understanding of business im-
pacts, which requires an understand-
ing of laws and regulations as well as
the business model supported by the
software. Because developers and
designers build up certain assump-
tions regarding their system and the
risks it faces; at a minimum, risk and
security specialists should assist in
challenging those assumptions
against generally accepted best prac-
tice. They’re in a better position to
“assume nothing.”

Putting the right people together
for an analysis is important: consider
the risk team very carefully. Knowl-
edge and experience cannot be
overemphasized because risk analysis
is not a science, and broad knowl-
edge of vulnerabilities, bugs, flaws,
and threats is a critical success factor.

A prototypical analysis involves
several major activities that often in-
clude several basic substeps:

• Learn as much as possible about
the analysis target (substeps include

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining risk analysis.

Building Security In

reading and understanding specifi-
cations, architecture documents,
and other design materials; dis-
cussing and brainstorming with
the group; determining system
boundary and data sensitivity/crit-
icality; playing with the software if
it exists in an executable form;
studying the code and other soft-
ware artifacts; and identifying
threats and agreeing on relevant
sources of threat).

• Discuss security issues surrounding
the software (substeps include ar-
guing about how the product
works and determining areas of
disagreement; identifying possible
vulnerabilities, sometimes by using
tools or lists of common vulnera-
bilities; mapping out exploits and
discussing possible fixes; and gain-
ing an understanding of current
and planned security controls).

• Determine the probability of
compromise (substeps include
mapping out attack scenarios for
vulnerability exploitation and bal-

ancing controls against threat ca-
pacity to determine likelihood).

• Perform impact analysis (substeps
include determining the impact on
asset and business goals and consid-
ering the impact on security).

• Rank risks.
• Develop a mitigation strategy (a

substep is recommending counter-
measures to mitigate risks).

• Report findings (substeps include
carefully describing major and
minor risks while paying close at-
tention to impact, and providing
basic information about where to
spend limited mitigation resources).

The sidebar on Cigital’s solution
shows one commercial example that
follows this basic approach.

Knowledge
Requirement
Design-level analysis is knowledge
intensive. Microsoft’s STRIDE
model, for example, involves the un-
derstanding and application of sev-

eral threat categories during analy-
sis.3 Similarly, Cigital’s SQM ap-
proach uses attack patterns4 and ex-
ploit graphs to understand attack
resistance, knowledge of design
principles for ambiguity analysis,5

and knowledge regarding com-
monly used frameworks (.NET and
J2EE being two examples) and soft-
ware components.

A central activity in design-level
risk analysis is to build up a consistent
view of the target system at a reason-
ably high level. The idea is to see the
forest, not get lost in the trees. The
most appropriate level for this de-
scription is the typical “white board”
view of boxes and arrows describing
the interaction of various critical de-
sign components. The nature of soft-
ware systems leads many developers
and analysts to assume (incorrectly)
that a code-level description of soft-
ware is sufficient for spotting design
problems. Although this might occa-
sionally be true, it does not generally
hold. Extreme programming’s claim
that “the code is the design” repre-
sents one radical end of this approach.
Without a white-board level of de-
scription, an architectural risk analy-
sis is likely to overlook important
risks related to flaws.

Risk Analysis
and Requirements
Previous articles in this series con-
sider security requirements defini-
tions and discuss abuse cases as a
method for generating require-
ments. In the purest sense, risk analy-
sis begins at this point: design re-
quirements should take into account
the risks you’re trying to counter.
Let’s look at three approaches to in-
terjecting a risk-based philosophy
into the requirements phase (note
that the requirements systems based
on UML tend to focus more atten-
tion on security functionality than
they do on misuse and abuse cases):

• SecureUML (www.informatik.
uni-freiburg.de/~tolo/pubs/
secuml_uml2002.pdf) is a met-

34 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2004

Figure A illustrates Cigital’s continuous risk-analysis process, which loops constantly and at

many levels of description through several phases. In Cigital’s approach, business goals

determine risks, risks drive methods, methods yield measurement, measurement drives decision

support, and decision support drives fix/rework and application quality.

Cigital’s approach

Artifact analysis

Validation loop

Technical
expertise

Measure
and report

Initiate
process

improvement

1
Understand
the business

context

2
Identfiy the

business risks

Artifact analysis

3
Identfiy the

technical risks

Artifact analysis

Business context

6
Fix

the artifacts

5
Define the

risk mitigation
strategy

4
Synthesize

and prioritize
the risks

7
Validate

the artifacts

Figure A. Cigital’s risk-management framework. Many aspects of frameworks
such as this can be automated—for example, risk storage, business risk to
technical risk mapping, and the display of status over time.

Building Security In

hodology for modeling access-
control policies and their integra-
tion into model-driven software
development. SecureUML is
based on role-based access control
and models security requirements
for well-behaved applications in
predictable environments.

• UMLsec (http://www4.in.tum.
de/~umlsec/) is an extension to
UML that enables the modeling of
security-related features such as
confidentiality and access control.

• Guttorm Sindre and Andreas Op-
dahl6 attempt to model abuse cases
as a way of understanding how ap-
plications might respond to threats
in a less controllable environment;
they describe functions that the
system should not allow.

A key variable in the risk equa-
tion is impact. Business impacts gen-
erally boil down into three broad
categories:

• federal or state laws and regulations
(including the Gramm-Leach-
Bliley Act, HIPAA, and the much-
cited California Senate Bill 1386);

• financial or commercial considera-
tions (such as revenue protection,
control over high-value intellec-
tual property, and preservation of
brand and reputation); and

• contractual considerations (in-
cluding service-level agreements
and avoidance of liability).

The first step to risk analysis at the re-
quirements stage is to break down re-
quirements into three simple cate-
gories: must haves, important to
haves, and nice but unnecessary. Un-
less you’re running an illegal opera-
tion, you should always class laws and
regulations into the first category—
these requirements should be in-
stantly mandatory and not subject to
further risk analysis (although an ROI
study can help you select the most
cost-effective mitigations). If the law
requires you to protect private infor-
mation, for example, this require-
ment is compulsory and should not

be subject to a risk-based decision.
Why? Because the government has
the power to put you out of business,
which is the mother of all risks (if you
want to test government regulators
on this one, go right ahead).

You’re then left with risk im-
pacts—the ones that have as variables
potential impact and probability—
that must be managed in other ways.
Examples of mitigations range from
technical protections and controls, to
business decisions for living with the
risk. At the initial requirements defi-
nition stage, you might be able to
make some assumptions regarding
which controls are necessary.

Evenly applying these simple
ideas will put you ahead of most ap-
plication developers. As you move
toward the design and build stages,
risk analysis should begin to test your
first assumptions from the require-
ments stage by testing the threats and
vulnerabilities inherent in the design.

Limitations
Traditional risk-analysis output is
difficult to apply directly to modern
software design. Even assuming a
high level of confidence in the ability
to predict the dollar loss for a given
event and performing Monte Carlo
distribution analysis of prior events
to derive a statistically sound proba-
bility distribution for future events,
there’s still a large gap between an
ALE’s raw dollar figure (as discussed
earlier) and a detailed software secu-
rity mitigation definition.

A more worrying concern is that
traditional risk-analysis techniques
do not necessarily provide an easy
guide (not to mention an exhaustive
list) of all potential vulnerabilities
and threats to consider at a compo-
nent/environment level. This is why
a large knowledge base and lots of
experience is invaluable.

The thorny knowledge problem
arises in part because modern appli-
cations, including Web services ap-
plications, are designed to span mul-
tiple boundaries of trust. The
vulnerability of—and threat to—any

given component varies with the
platform on which that component
exists (think C# on a Windows
.NET server versus J2EE on Tom-
cat/Apache/Linux) and the envi-
ronment in which it lives (think se-
cure DMZ versus directly exposed
LAN). However, few traditional
methodologies adequately address
the contextual variability of risk
given changes in the core environ-
ment. This is a fatal flaw when con-
sidering highly distributed applica-
tions or Web services.

In modern frameworks such as
.NET and J2EE, security methods
exist at almost every layer, yet too
many applications today rely on a “re-
active” protection infrastructure that
only provides protection at the net-
work transport layer. This is too often
summed up by saying, “We’re secure
because we use SSL and implement
firewalls,” which opens the door to all
sorts of problems such as those engen-
dered by port 80 attacks, SQL injec-
tion, class spoofing, and method
overwriting (to name just a few).

One approach to overcoming
these problems is to start looking at
software risk analysis on a compo-
nent-by-component, tier-by-tier,
and environment-by-environment
level and then apply the principles of
measuring threats, vulnerabilities,
and impacts at each level.

A practical
application risk-
analysis approach
At the design stage, any risk-analysis
process should be tailored to software
design. Recall that the object of this
exercise is to determine specific vul-
nerabilities and threats that exist for
the software and assess their impact.
A functional decomposition of the
application into major components,
processes, data stores, and data com-
munication flows, mapped against
the environments across which the
software will be deployed, allows for a
desktop review of threats and poten-
tial vulnerabilities. We cannot
overemphasize the importance of

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 35

Building Security In

36 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2004

using a forest-level view of a system
during risk analysis. Some sort of
high-level model of the system (from
a whiteboard with boxes and arrows
to a formally specified mathematical
model) makes risk analysis at the ar-
chitectural level possible.

Although we could contemplate
using modeling languages such as
UMLSec to attempt to model threats,
even the most rudimentary analysis
approaches can yield meaningful re-
sults. Consider Figure 2, which shows
a simple four-tier deployment design
pattern for a standard-issue Web-
based application. If we apply risk-
analysis principles to this level of de-
sign, we can immediately draw some
useful conclusions about the applica-
tion’s security design.

During the risk-analysis pro-
cess, we use the high-level design
to consider

• the threat present in each tier’s en-
vironment;

• the kinds of vulnerabilities that
might exist in each component as
well as the dataflows;

• the business impact of such techni-
cal risks, were they to be realized;

• the probability of such a risk being
realized; and

• any feasible countermeasures that
could be implemented at each tier,
taking into account the full range
of protection mechanisms available
(from base operating system-level
security through virtual machine
security mechanisms such as the
use of Java cryptography exten-
sions in J2EE).

In the simple example shown in
Figure 2, each tier exists in a different
security realm or trust zone. This fact
immediately gives us the context of

the threat each tier faces. If we go on
to superimpose data types (such as
user-logon credentials, records, and
orders), their flows (logon requests,
record queries, and order entries),
and, more importantly, their security
classifications, we can draw conclu-
sions about the protection for these
data elements and their transmission
given the current design.

Suppose that SSL protects user-
logon flows between the client and
the Web server. Our deployment pat-
tern indicates that although the en-
crypted tunnel terminates at this tier
(because of the inherent threat in the
zones occupied by the Web and ap-
plication tiers), we really must prevent
eavesdropping inside and between
these two tiers as well. This might in-
dicate the need to establish yet an-
other encrypted tunnel or to consider
a different approach to securing this
data (maybe message-level encryp-
tion instead of tunneling).

Considering the communications
risks, it becomes clear why a deploy-
ment pattern is valuable, because it lets
us consider infrastructure (operating
system and network) security mecha-
nisms and application-level mecha-
nisms as risk-mitigation measures.

Decomposing software on a
component-by-component basis to
establish trust zones is a comfortable
way for most software developers
and auditors to begin adopting a
risk-management approach to soft-
ware security. Because most systems,
especially those exhibiting the n-tier
architecture, rely on several third-
party components and a variety of
programming languages, defining
zones of trust and taking an out-
side/in perspective similar to the one
normally found in traditional secu-
rity has clear benefits. In any case, in-
teraction of different products and
languages is an architectural element
likely to be a vulnerability hotbed.

At its heart, decomposition is a
natural way to partition a system.
Given a simple decomposition, se-
curity professionals will be able to
advise developers and architects

Client tier

Web tier

Application tier

Data tier

Client computer

Order processing
Web interface

Client computer

Order processing
rich interface

Web server

Order processing
application virtual directory

Database server

Order
database

Application server

Application server remoting server

Order processing application

Figure 2. Forest-level view of a standard-issue four-tier Web application. In this design,
the client tier exists out on the Internet, while the remaining tiers are on internal
networks connected to the Internet. Customers using the client indirectly affect data
in the database, so control and access must be managed through all tiers.

Building Security In

about aspects of security they’re fa-
miliar with, such as network-based
component boundaries and authen-
tication. However, the composition
problem is unsolved and very
tricky—even the most secure com-
ponents can be assembled into an in-
secure mess.

As organizations become adept at
identifying vulnerability and its busi-
ness impact, the risk-analysis team
should evolve the basic approach to
include additional assessment of the
risks found within—or encompass-
ing all—tiers. This evolution can un-
cover technology-specific vulnera-
bilities based on failings other than
trust issues across tier boundaries.
Examples of more subtle risks that
can only be flushed out with a more
sophisticated approach include
transaction management risks and
luring attacks.

R isk analysis is, at best, a good
general-purpose yardstick by

which we can judge our security de-
sign’s effectiveness. Because roughly
50 percent of security problems are
the result of design flaws, perform-
ing a risk analysis at the design level
is an important part of a solid soft-
ware security program. Taking the
trouble to apply risk-analysis meth-
ods at the design level for any appli-
cation often yields valuable, busi-
ness-relevant results. The process of
risk analysis is continuous and ap-
plies to many different levels, at once
identifying system-level vulnerabili-
ties, assigning probability and im-
pact, and determining reasonable
mitigation strategies. By consider-
ing the resulting ranked risks, busi-
ness stakeholders can determine
how to manage particular risks and
what the most cost-effective con-
trols might be.

Acknowledgments
We thank John Steven and Stan Wisseman
(both of Cigital) for their insightful comments
on early drafts of this work. We also thank
Bruce Phillips of Fidelity National Financial.

References
1. G. McGraw, “Software Security,”

IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

2. H. Cavusoglu, B. Mishra, and S.
Raghunathan, The Effect of Internet
Security Breach Announcements on Mar-
ket Value of Breached Firms and Internet
Security Developers, tech. report, Univ.
of Texas at Dallas, School of Man-
agement, Feb. 2002; www.ut
dallas.edu/~huseyin/breach.pdf.

3. M. Howard and D. LaBlanc, Writ-
ing Secure Code, 2nd ed., Microsoft
Press, 2003.

4. G. Hoglund and G. McGraw,
Exploiting Software, Addison-
Wesley, 2004.

5. J. Viega and G. McGraw, Building
Secure Software: How to Avoid Secu-
rity Problems the Right Way,
Addison-Wesley, 2001.

6. G. Sindre and A.L. Opdahl, “Elic-
iting Security Requirements by
Misuse Cases,” Proc. 37th Technol-
ogy of Object-Oriented Languages and
Systems (TOOLS-37), IEEE CS
Press, 2000.

Denis Verdon is senior vice president of
corporate information security at Fidelity
National Financial. He has 21 years expe-
rience in Information Security and IT,
much of it gained while working both as
a senior information security executive
and as a consultant to senior security
executives at Global 200 companies
across 19 countries. Contact him at
denis.verdon@fnf.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. He serves on the technical advi-
sory boards of Authentica, Counterpane,
Fortify, and Indigo. He also is coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

