
Building Security In
Editor: Gary McGraw, gem@cigital.com

trend, most systems for designing
software also tend to describe posi-
tive features.

Savvy software practitioners are
beginning to think beyond features,
touching on emergent properties of
software systems such as reliability, se-
curity, and performance. This is
mostly because experienced cus-
tomers are beginning to demand se-
cure and reliable software; but in
many situations, it’s still up to the soft-
ware developer to define “secure”
and “reliable.”

To create secure and reliable soft-
ware, we first must anticipate abnor-
mal behavior. We don’t normally de-
scribe non-normative behavior in use
cases, nor do we describe it with
UML, but we must have some way to
talk about and prepare for it. “Mis-
use” (or “abuse”) cases can help orga-
nizations begin to see their software in
the same light that attackers do. By
thinking beyond normative features,
while simultaneously contemplating
negative or unexpected events, soft-
ware security professionals can better
understand how to create secure and
reliable software.

Guttorm Sindre and Andreas
Opdahl extend use-case diagrams
with misuse cases to represent the ac-
tions that systems should prevent in
tandem with those that they should
support for security and privacy re-

quirement analysis.1 Ian Alexander
advocates using misuse and use cases
together to conduct threat and hazard
analysis during requirements analy-
sis.2 In this article, we provide a non-
academic introduction to the soft-
ware security best practice of misuse
and abuse cases, showing you how to
put the basic science to work. In case
you’re keeping track, Figure 1 shows
you where we are in our series of arti-
cles about software security’s place in
the software development life cycle.

Security is not
a set of features
There is no convenient security pull-
down menu that will let you select
“security” and then sit back and
watch magic things happen. Unfor-
tunately, many software developers
simply link functional security fea-
tures and mechanisms somewhere
into their software, mistakenly assum-
ing that doing so addresses security
needs throughout the system. Too
often, product literature makes broad,
feature-based claims about security,
such as “built with SSL” or “128-bit
encryption included,” which repre-
sent the vendor’s entire approach for
securing its product.

Security is an emergent property
of a system, not a feature. This is like
how “being dry” is an emergent prop-
erty of being inside a tent in the rain.

The tent only keeps you dry if the
poles are stabilized, vertical, and able
to support the weight of wet fabric;
the tent also must have waterproof
fabric (with no holes) and be large
enough to protect everyone who
wants to remain dry. Lastly, everyone
must remain under the tent the entire
time it’s raining. So, although having
poles and fabric is important, it’s not
enough to say, “the tent has poles and
fabric, thus it keeps you dry!” This sort
of claim, however, is analogous to the
claims that software vendors make
when they highlight numbers of bits
in crypto keys or the use of particular
encryption algorithms. Cryptography
of one kind or another is usually nec-
essary to create a secure system, but se-
curity features alone are not sufficient
for building secure software.

Because security is not a feature,
it can’t be bolted on after other soft-
ware features are codified, nor can it
be patched in after attacks have oc-
curred in the field. Instead, it must be
built in from the ground up, as a crit-
ical part of the design from the very
beginning (requirements specifica-
tion) and included in every subse-
quent development phase all the way
through fielding a complete system.

Sometimes building security in at
the beginning means making explicit
trade-offs when specifying system re-
quirements. For example, ease of use
might be paramount in a medical sys-
tem designed for secretaries in doc-
tors’ offices, but complex authentica-
tion procedures, such as obtaining and
using a cryptographic identity, can be
hard to use.3 Furthermore, regulatory
pressures from HIPAA and Califor-
nia’s new privacy regulations (SB
1386) force designers to negotiate a
reasonable trade-off.

PACO HOPE

AND GARY

MCGRAW

Cigital

ANNIE I.
ANTÓN

North
Carolina State
University

S
oftware development is all about making software

do something: when software vendors sell their

products, they talk about what the products do to

make customers’ lives easier, such as encapsulating

business processes or something similarly positive. Following this

Misuse and Abuse Cases:
Getting Past the Positive

32 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

Technical approaches must go far
beyond the obvious features, deep
into the many-tiered heart of a soft-
ware system to provide enough secu-
rity: authentication and authorization
can’t stop at a program’s front door.
The best, most cost-effective ap-
proach to software security incorpo-
rates thinking beyond normative fea-
tures and incorporates that thinking
throughout the development process.
Every time a new requirement, fea-
ture, or use case is created, someone
should spend some time thinking
about how that feature might be un-
intentionally misused or intentionally
abused. Professionals who know how
features are attacked and how to pro-
tect software should play an active role
in this kind of analysis.

Thinking about
what you can’t do
Attackers are not standard-issue cus-
tomers. They’re bad people with
malicious intentions who want your
software to act to their benefit. If the
development process doesn’t address
unexpected or abnormal behavior,
then an attacker usually has plenty of
raw material with which to work.4

Attackers are creative, but despite
this, they’ll always probe well-known
locations—boundary conditions,
edges, intersystem communication,
and system assumptions—in the
course of their attacks. Clever attack-
ers will try to undermine the assump-
tions on which a system was built. If a
design assumes that connections from
the Web server to the database server
are always valid, for example, an at-
tacker will try to make the Web server
send inappropriate requests to access
valuable data. If the software design as-
sumes that the client never modifies its
Web browser cookies before they are
sent back to the requesting server (in
an attempt to preserve some state), at-
tackers will intentionally cause prob-
lems by modifying the cookies. Build-
ing Secure Software teaches us that we
have to be on guard with all of our as-
sumptions.5

When we design and analyze a

system, we’re in a great position to
know our systems better than poten-
tial attackers do. We must leverage this
knowledge to the benefit of security
and reliability, which we can do by
asking and answering the following
critical questions: What assumptions
are implicit in our system? What
kinds of things make our assumptions
false? What kinds of attack patterns
will an attacker bring to bear?

Unfortunately, a system’s creators
are not the best security analysts of
that system. Consciously noting and
considering all assumptions (espe-
cially in light of thinking like an at-
tacker) is extremely difficult for those
who have built up a set of implicit as-
sumptions. Fortunately, these profes-
sionals make excellent subject matter
experts (SMEs). Together, SMEs and
security analysts can ferret out base
assumptions in a system under analy-
sis and think through the ways an at-
tacker will approach the software.

Creating useful
misuse cases
One of the goals of misuse cases is to
decide and document a priori how
software should react to illegitimate
use. The simplest, most practical
method for creating misuse cases is
usually through a process of informed
brainstorming. Several theoretical
methods require fully specifying a sys-
tem with rigorous formal models and
logics, but such activities are ex-
tremely time and resource intensive.
A more practical approach teams se-

curity and reliability experts with
SMEs. This approach relies heavily
on expertise and covers a lot of
ground quickly

To guide brainstorming, software
security experts ask many questions
of a system’s designers to help identify
the places where the system is likely
to have weaknesses. This activity
mirrors the way attackers think. Such
brainstorming involves a careful look
at all user interfaces (including envi-
ronmental factors) and considers
events that developers assume a per-
son can’t or won’t do. These “can’ts”
and “won’ts” take many forms:
“Users can’t enter more than 50
characters because the JavaScript
code won’t let them, ” or “Users
don’t understand the format of the
cached data. They can’t modify it.”
Attackers, unfortunately, can make
these can’ts and won’ts happen.

The process of specifying abuse
cases makes a designer very clearly
differentiate appropriate use from in-
appropriate use, but to get there, the
designer must ask the right ques-
tions: How can the system distin-
guish between good and bad input?
Can it tell whether a request is com-
ing from a legitimate or a rogue ap-
plication replaying traffic? All sys-
tems have more vulnerable places
than the obvious front doors, of
course, so where can a bad guy be
positioned? On the wire? At a work-
station? In the back office? Any
communication line between two
endpoints or two components is a

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining abuse cases and security requirements.

place where an attacker can try to in-
terpose, so what can this attacker do
in the system? Watch communica-
tions traffic? Modify and replay such
traffic? Read files stored on the
workstation? Change registry keys
or configuration files? Be the DLL?
Be the “chip”?

Trying to answer such questions
helps software designers explicitly
question design and architecture as-
sumptions, and it puts the designer
squarely ahead of the attacker by
identifying and fixing a problem be-
fore it’s even created.

An abuse case
example
Cigital recently reviewed a client-
server application and found a classic
software security problem. The ar-
chitecture had been set up so that the
server relied on the client-side appli-
cation, which manipulated a finan-
cially sensitive database, to manage all
data-access permissions—no permis-
sions were enforced on the server it-
self. In fact, only the client had any
notion of permissions and access
control. To make matters worse, a
complete copy of the database (only
parts of which were to be viewed by a

given user with a particular client)
was sent to the client program, which
ran on a garden-variety desktop PC.
This means that a complete copy of
the sensitive data expressly not to be
viewed by the user was available on
that user’s PC in the clear. If the user
looked in the application’s cache on
the hard disk and used a standard-
issue unzip utility, he or she could see
all sorts of sensitive information.

The client also enforced which
messages were sent to the server,
honoring these messages indepen-
dent of the user’s actual credentials.
The server assumed that any mes-
sages coming from the client had
passed the client software’s access
control system (and policy) and
were, therefore, legitimate. By inter-
cepting network traffic, corrupting
values in the client software’s cache,
or building a hostile client, malicious
users could inject data into the data-
base that they were not even sup-
posed to read (much less write to).

Determining the can’ts and
won’ts in such a case is difficult for
those who think only about positive
features. Attack patterns can provide
some guidance (see the sidebar). At-
tack patterns are like patterns in
sewing—a blueprint for creating an
attack. Everyone’s favorite example,
the buffer overflow, follows several
different standard patterns, but pat-
terns allow for a fair amount of varia-
tion on a theme. They can take into
account many dimensions, including
timing, resources required, tech-
niques, and so forth.4 When we’re
trying to develop misuse and abuse
cases, attack patterns can help.

O f course, like all good things,
misuse cases can be overused

(and generated forever with little im-
pact on actual security). A solid ap-
proach to building them requires a
combination of security know-how
and subject matter expertise to pri-
oritize misuse cases as they are gener-
ated and to strike the right balance
between cost and value.

References
1. G. Sindre and A.L. Opdahl, “Elic-

iting Security Requirements by
Misuse Cases,” Proc. 37th Int’l Conf.
Technology of Object-Oriented Lan-
guages and Systems (TOOLS-37’00),
IEEE Press, 2000, pp. 120 –131.

2. I. Alexander, “Misuse Cases: Use
Cases with Hostile Intent,” IEEE Soft-
ware, vol. 20, no. 1, 2003, pp. 58–66.

3. A. Whitten and J. Tygar, “Why
Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,” Proc.
Usenix Security Symp., Usenix
Assoc., 1999.

4. G. Hoglund and G. McGraw, Exploit-
ing Software, Addison-Wesley, 2004.

5. J. Viega and G. McGraw, Building
Secure Software: How to Avoid Security
Problems the Right Way, Addison-
Wesley, 2001.

Paco Hope is a senior security consultant
with Cigital. His areas of expertise include
application security, cryptography, LAN
and host security, and smart cards. He is
co-author of Mastering FreeBSD and
OpenBSD Security (O’Reilly, 2004). He
has an MS in computer science from the
University of Virginia. Contact him at
paco@cigital.com.

Annie I. Antón is an associate professor in
the North Carolina State University College
of Engineering, where she is a Cyber
Defense Lab member and director of The
Privacy Place (theprivacyplace.org). Her
research interests include software require-
ments engineering, Internet privacy and
security policy, software evolution, and
process improvement. She has a BS, MS,
and PhD in computer science from the
Georgia Institute of Technology. She is a
member of the ACM, the IAPP, and a senior
member of the IEEE. Contact her at
aianton@eos.ncsu.edu.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. He serves on the technical advi-
sory boards of Authentica, Counterpane,
Fortify, and Indigo. He also is coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

Building Security In

34 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2004

Attack patterns are extremely useful in generating

valid abuse and misuse cases. The book Exploiting

Software (Addison-Wesley, 2004) includes the identifi-

cation and description of 48 attack patterns, 10 of

which are shown here:

Make the client invisible

Target programs that write to privileged OS resources

Attack user-supplied configuration files that run com-

mands to elevate privilege

Leverage configuration file search paths

Manipulate terminal devices

Perform simple script injection

Pass local file names to functions that expect a URL

Inject functions into content-based file systems

Use alternative IP addresses and encodings

Force a buffer overflow in an API call

Attack patterns

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

