
Building Security In
Editor: Gary McGraw, gem@cigital.com

opportunity exists for disaster if se-
curity is done wrong. This article
describes 13 snares that we must
avoid to end up with SOA security
that makes sense.

SOA what?
Getting to the bottom of exactly
what SOA is might seem a bit
daunting, especially given the
acronym-laden, hype-induced hy-
perbole floating around the Inter-
net. The buzz about SOA today
reminds us of the buzz about Java in
the mid 1990s—only somehow
even more vague. Will it really clean
everything up and send it off to col-
lege? The real question is whether
there’s even a bottom to get to. It
seems as if SOA amounts to a Web
services-based architecture that re-
lies on a data-driven XML model.
The notion is to provide various ser-
vices over an enterprise bus that
many diverse applications can access
and use remotely. As you might
imagine, doing this right involves
knowing plenty about how the bus-
iness actually works and thinking
clearly about what architectural
components make sense.

An enterprise information archi-
tecture that’s aligned with business is
a good thing, and to the extent that
SOA’s adoption helps with this
alignment, the SOA itself will be

useful. However, past architectural
paradigms have had to deal with
three common problems:

• inability to create composite ap-
plications nimbly (with parts
borrowed from multiple large
enterprise applications),

• difficulty in defining clear services
based on encapsulating myriad di-
verse APIs from large enterprise
applications, and

• problems in containing and
managing services in a centrally
reasonable way, leading to the pro-
liferation of closely related but dif-
ficult-to-manage clones.

SOA promises to address these three
problems in one fell swoop, by
defining language- and hardware-
independent protocols and repre-
sentations for loose coupling of
software components.

Ultimately, a Web services-based
SOA also seems to be a relevant tar-
get for many enterprises. The differ-
ence between a random collection
of Web applications and a SOA
approach lies mainly in the use of a
common XML-based data model
and an intelligent transport/trans-
mission bus. Think of moving from
an RPC-centric model to a docu-
ment-centric model to grok the dif-
ference: message granularity shifts

from specific calls to APIs toward
larger globs of data+state messaging
built out of XML. In some cases, the
transmission bus itself does all the
necessary data restructuring to allow
different services to communicate.

What about security?
It almost goes without saying that
large enterprises are obsessed with se-
curity and securing their critical ap-
plications—their essential data are at
stake. Any move toward SOA pre-
sents a prime opportunity to build se-
curity into future applications.

But with every opportunity
comes a danger of seriously screwing
things up. Early SOA adopters are al-
ready falling prey to bad thinking
about security. The biggest problem
by far involves confusing software
security with security software (note
the word order). As this department
emphasizes, security isn’t a feature.
Just as you can’t sprinkle crypto fairy
dust on software to make it magically
secure, you can’t liberally apply
crypto to SOA and end up with se-
curity. Crypto is security software;
what we want is software security.

Those considering SOA would
do well to give close consideration
to the inherent security of the Web
services platform, as well as to the
services themselves. SOA presents
an opportunity to avoid or other-
wise manage security flaws that
pervade software architecture (ac-
counting for 50 percent of the soft-
ware security problem).1

In the messy real world of enter-
prise applications, vendors typically
highlight the primary security fea-
tures that they offer as a key selling
point. However, outside the list of
mandatory security features, few

JEREMY

EPSTEIN

webMethods

SCOTT

MATSUMOTO

AND GARY

MCGRAW

Cigital

T
he current buzzword of choice among the technical

elite (at least those subject to marketing depart-

ments) is service-oriented architecture, or SOA (pro-

nounced “SO-uh”). As SOA moves from hype to

practice, an opportunity exists to do security right, but a similar

Software Security and SOA:
Danger, Will Robinson!

80 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/06/$20.00 © 2006 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

vendors can attest to the underlying
security of the product itself. Thus,
users might have all the security fea-
tures in the world, but they remain
untenably insecure.

The challenges of insecure soft-
ware grow with the move to SOA,
which by its very definition exposes
software vulnerabilities more widely
than ever. Heck, given the Web Ser-
vices Description Language (WSDL)
and universal description, discovery,
and integration (UDDI), gaining
the information you need as a mali-
cious attacker to perform a software
exploit is now easier than ever. In
this scenario, a variety of standards
might take the place of arbitrary and
often-broken home-grown security
features, but the results remain the
same because the services themselves
suffer from shoddy construction.

By understanding the common
snares we list in the next section,
those enterprises considering SOA
technology can ask better questions,
such as, “How do I know that SOA
product 57 is secure?” and “What
kinds of measures have been taken
to avoid software security defects?”

Thirteen
security snares
Without further ado, let’s get into
that list:

• Assuming the vendor will take care of
security. When you buy a new car,
you don’t ask about the engineer-
ing processes used in the design;
you assume that Ford or Toyota
knows more about how to design
cars than you do. Of course, gov-
ernment oversight helps with car
safety, but because there is no such
oversight on software vendors
today, you can’t assume that ven-
dors will take care of it. They have
a propensity to “check off the se-
curity box” by throwing in some
crypto features and calling it a day.
Even SOA security vendors such
as Vordel and Reactivity are focus-
ing their attention on reactive ap-
proaches instead of telling people

they need to build security in.
• Not asking about security at all. Many

IT organizations (even in large
companies) have no dedicated in-
ternal security staff. Even in or-
ganizations with great network
security staff, little or no attention
is paid to software security. Be-
cause SOA is about software archi-
tecture, security might not be
something that even comes up.

• Asking about the wrong kinds of secu-
rity things. On one hand, IT secu-
rity personnel are likely to believe
in the religion of the firewall; in
fact, SOA has already engendered
its own firewall sect. However, re-
active approaches haven’t worked
out very well for security, and
they’re not likely to start working
soon. On the other hand, software
people are likely to fall square into
the “security software” hole. As
we said earlier, security features
alone don’t make for software se-
curity. Building secure software
means applying the software secu-

rity touchpoints1 and thinking
about security during design and
implementation.

• Allowing discomfort with the technol-
ogy to overcome the need for software
security. Most network security en-
gineers feel comfortable with the
bits and bytes of routers, firewalls,
and operating systems, but few
know much about the security of
enterprise business applications or
the SOA itself. As a result, they
tend to ask about the aspects
they’re familiar with—such as use
of SSL—and ignore the harder
questions like, “How can you
demonstrate to us that this product
is secure?” Getting outside your
technology comfort zone is often
elucidating and educational. Do it.

• Relying on a cursory risk assessment.
Smart organizations know how
to manage risks, and they make
conscious decisions about where
to focus their limited resources.
Some believe that even if their
SOA framework has security

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 81

Building Security In

flaws, the odds of those problems
being detected and exploited is
far lower than the odds of an at-
tack through an unpatched router

or Web server. Today, evil people
are attacking commodity net-
work products more often than
customer-specific Web services,
but this is quickly changing. Soft-
ware security is becoming in-
creasingly important because
attackers are changing their tar-
gets—risk assessments shift over
time to account for an attack’s
probability for a reason. What-
ever you do, don’t forget about
software security and software
flaws during risk assessments.

• Believing you’re secure for no apparent
reason or for the wrong reasons.
Everyone’s heard that old chest-
nut, “We’re safe because we’re be-
hind the firewall,” and in too
many organizations, this is treated
as gospel. Because Web services
tend to be implemented on
servers inside the organization,
worry about their inherent secu-
rity is often discounted, but the
fact remains that most firewalls
will simply pass along a Web ser-
vices request, including any attack
code. SOAP is the attacker’s
friend, and the age of the firewall
is drawing to a close. The very
idea of SOA is to promote reuse
and repurposing of common
functionality; it’s about external-
izing the data schema and thereby
further erasing the distinction be-
tween “inside” and “outside.”

• Misapplying vulnerability metrics.
It’s easy enough to search data-
bases of vulnerabilities (such as
the CVE or BugTraq) to see how

many security problems have
turned up in a given product and
how severe they are. Rather than
asking the vendor directly about

security, some security engineers
incorrectly rely on public metrics
such as the number and severity
of publicly reported bugs to
determine the product’s quality.
Whether these metrics are corre-
lated with actual product security
remains an open research ques-
tion. A better idea is to ask a
vendor questions about security
assurance in their SDLC: do they
use the touchpoints?1

• Trusting the vendors (too much). Ven-
dors might intentionally or unin-
tentionally give inaccurate results.
A vendor who performs penetra-
tion testing, for example, might
not have tested the product or ver-
sion being considered, thus the
testing’s value might be reduced.
But some data are more useful
than others. Does the vendor
review code with source-code
analysis tools such as those from
Fortify, Secure Software, or
Ounce Labs? What kinds of results
can the vendor show you?

• Building a proof of concept that ignores
security “for now.” SOA gurus
recommend the “start small and
grow” approach to re-architecture.
This approach most often results in
a proof-of-concept application that
acts as a test of some framework or
collection of vendor products. Fre-
quently, security isn’t a requirement
in this proof of concept, and tech-
nical issues other than the func-
tional success of the proof of
concept aren’t revisited before a
procurement decision is made.

Thus, the opportunity to consider
software security is missed. Don’t
leave security for later—ever. Iron-
ically, the “security as a feature” ap-
proach at least opens the door to a
discussion of security.

• Believing security is somebody else’s
job. This could be a variant of
“assuming that the vendor will
take care of security,” or it could be
a symptom of an organization in
which security specialists aren’t re-
sponsible for the security of the
development systems in use. Soft-
ware security is everybody’s job.
By involving development in se-
curity, we cut through the myth of
security by firewall.

• Giving up hope. The security spe-
cialist (if there is one) knows that
he or she can only say “no” so
many times and only has a limited
amount of influence over pur-
chasing decisions. Why spend the
time questioning a vendor or ana-
lyzing a SOA platform’s security
when his or her actions are un-
likely to impact the procurement
or deployment decision? For this
person, it seems easier and better
to use any silver bullets to influ-
ence a critical piece of security in-
frastructure. Don’t give up hope.
The only way we’ll fix the security
problem we’re in is by building
better software.

• Putting too much weight on security
standards and security features. Stan-
dards such as SSL (for Web ser-
vers), S/MIME (for email), and
WS-Security (in the Web services
space) are widely perceived to pro-
vide security. Too many organiza-
tions fail to understand that
although these standards are im-
portant, they don’t actually do
anything to secure a system. An
implementation bug or an archi-
tectural flaw in a product can leave
a system that’s completely stan-
dards-compliant completely inse-
cure as well. Use a discussion of
security features as a flying wedge
to talk about more intensive soft-
ware security assurance.

82 IEEE SECURITY & PRIVACY ■ JANUARY/FEBRUARY 2006

Everyone’s heard that old chestnut, ‘We’re

safe because we’re behind the firewall,’ and

in too many organizations, this is treated

as gospel.

Building Security In

• Doing it all yourself. To end this list
on a positive note, some organiza-
tions don’t ask the security ques-
tion because they plan to come to
their own conclusions by per-
forming their own hard-core
analysis and testing. Good!

Despite the failure of users to ask
about software security when it
comes to SOA, vendors are actually
quite willing, able, and, in many
cases, eager to provide improved se-
curity in their products. In other
words, there’s adequate supply. The
problem is that there’s insufficient
demand, at least as expressed in buy-
ing decisions.

All for SOA, SOA for all
Why don’t we ask the security ques-
tion of every software vendor we
interview (SOA or otherwise)? In
many cases, the decision to do so could
be entirely reasonable. Whenever we
look at a vendor, we should make an
explicit decision whether the product’s
security is important, and if not, docu-
ment why it’s not. For many organiza-
tions, our 13 SOA security snares
could be the right starting point.

For those vendors from whom we
want and in fact need to know how
secure the product is, we need to
know what to ask and how to assess
the answers. Among the measures a
software vendor might use to increase
the robustness of their products
against security failures, you should
look for some of the following:

• strong security involvement in ar-
chitecture or design,

• good software engineering prac-
tices,

• security-focused quality assurance
(QA),

• penetration testing,
• automated vulnerability testing,
• manual or automated source code

analysis,
• defect density prediction,
• developers trained in software

security,
• a development methodology, such

as the touchpoints, that helps iden-
tify security problems before they
occur,1 and

• other third-party reviews.

Unfortunately, there’s no single an-
swer to how much is enough.
Should vendors be expected to
meet all or most of them? How do
we prioritize between competing
claims? How should we compare
two months of security-focused
QA, for example, to a week of auto-
matic code analysis? Is a product that
has undergone a BITS (www.
bitsinfo.org/about.html) evaluation
more secure than one in which all
developers are trained on software
security touchpoints?

In reality, these questions aren’t
that different from those raised in the
procurement cycle, such as the trade-
off between cost and performance,
with one exception: these are the
criteria that aren’t typically assessed in
a formal manner as part of the
process. It’s important to remember
that no evaluation process guarantees
a product’s success, but it does help
improve the odds of success while
providing us with additional recourse
should issues arise. Following a
proof-of-concept exercise, for exam-
ple, we can feel relatively certain that
we’ve identified reasonable perfor-
mance. By extending a product’s un-
derlying security to similar scrutiny,
we can not only improve the likeli-
hood that a vendor product won’t
expose a security breach within the
enterprise, but also provide greater
insight into its security architecture
so that we can more readily bolster
any uncovered shortcomings.

F or organizations building SOA
via Web services, solving the se-

curity problem requires both a se-
cure SOA framework and securing
the Web services themselves. Pur-
chasers of Web services platforms
can and should ask their vendors
about how they secure their plat-
forms. And developers of Web ser-

vices on top of these platforms
should take an equal responsibility
and introduce rigor in their design
and testing, so that the resulting Web
services don’t become the “hack
me” locations of choice.

By asking SOA vendors, “How
do you know your product is se-
cure?” organizations will raise the bar
for software security.

Acknowledgments
We thank John Steven of Cigital for his in-
sights on SOA security and the 13 SOA se-
curity snags. An earlier version of this article
appeared as “Software Security Supply in
Demand,” Web Services J., vol. 5, no. 11,
2005, pp. 26–27; http://pdf.sys-con.com/
WebServices/WSJNov2005.pdf.

Reference
1. G. McGraw, Software Security: Building

Security In, Addison-Wesley, 2006.

Jeremy Epstein is a senior director of
product security at webMethods, a
provider of business integration and Web
services software. His research interests
include methods for improving software
quality in commercial software and secu-
rity for e-voting systems. Epstein has a BS
in computer science from New Mexico
Tech and an MS in computer sciences
from Purdue University. He is a senior
member of the IEEE and a member of
Usenix. Contact him at jeremy.epstein@
webMethods.com.

Scott Matsumoto is a principal consul-
tant at Cigital in the enterprise archi-
tecture practice. His research interests
include DSLs and development tools.
Matsumoto has a BA in physics from
Lawrence University. Contact him at
smatsumoto@cigital.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software produc-
ers. McGraw is the author of Software
Security (Addison-Wesley, 2006), and
coauthor of Exploiting Software
(Addison-Wesley, 2004), Building Secure
Software (Addison-Wesley, 2001), Java
Security (John Wiley & Sons, 1996), and
four other books. He has a BA in philoso-
phy from the University of Virginia and a
dual PhD in computer science and cogni-
tive science from Indiana University. He’s
also a member of the Board of Governors
of the IEEE Computer Society. Contact
him at gem@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 83

Ensure that your networks operate safely
and provide critical services even in the face

of attacks. Develop lasting security solutions,
with this peer-reviewed publication.

Top security professionals in the field share
information you can rely on:

• Wireless Security
• Securing the Enterprise

• Designing for Security Infrastructure Security
• Privacy Issues

• Legal Issues
• Cybercrime

• Digital Rights Management
• Intellectual Property Protection and Piracy

• The Security Profession
• Education

Order your subscription today.

Submit an article to IEEE Security & Privacy. Log onto Manuscript Central at http://cs-ieee.manuscriptcentral.com/.

www.computer.org/security/

BE SECURE.

DON’T
RUN THE RISK.

BE SECURE.

DON’T
RUN THE RISK.

