
today are by and large unaware of the
security problems they can (un-
knowingly) introduce into code, a
taxonomy of coding errors should
provide a real tangible benefit to the
software security community.

This approach represents a strik-
ing alternative to taxonomies of at-
tack patterns1 or simple-minded
collections of specific vulnerabilities
(such as MITRE’s CVE, www.cve.
mitre.org). Attack-based approaches
are based on knowing your enemy
and assessing the possibility of similar
attack—they represent the black hat
side of the software security equa-
tion. However, a taxonomy of soft-
ware security errors is more positive
in nature—it’s most useful to the
white hat side of the software secu-
rity world. In the end, both ap-
proaches are valid and necessary.

Although the taxonomy pro-
posed here is incomplete and imper-
fect, it provides an important first
step. It focuses on collecting com-
mon errors and explaining them in a
way that makes sense to program-
mers. This new taxonomy is made
up of two distinct kinds of sets,
which we’re stealing from biology: a
phylum (a type of coding error, such
as illegal pointer value) and a king-

dom (a collection of phyla that
shares a common theme, such as
input validation and representa-
tion). Both kingdoms and phyla nat-
urally emerge from a soup of coding
rules relevant to enterprise software,
and it’s for this reason that this taxon-
omy is likely to be incomplete and
might lack certain coding errors. In
some cases, it’s easier and more effec-
tive to talk about a category of errors
than to talk about any particular at-
tack. Although categories are cer-
tainly related to attacks, they aren’t
the same as attack patterns.

On simplicity: Seven
plus or minus two
We’ve all seen lots of security tax-
onomies over the years, and they all
share one unfortunate property—
they’re too complex. People are
good at keeping track of seven things
(plus or minus two),2 so we used this
figure as a hard constraint and tried
to keep the number of kingdoms
down to seven (plus one). In order of
importance to software security,
these kingdoms are

• input validation and representation,
• API abuse,
• security features,

• time and state,
• errors,
• code quality,
• encapsulation, and
• environment.

Let’s look at each of these a little
more closely.

Input validation
and representation
Metacharacters, alternate encodings,
and numeric representations cause
input validation and representation prob-
lems. Of course, sometimes people
just forget to do any input validation at
all. If you do choose to do input vali-
dation, use a white list, not a black list.

Big problems result from putting
too much trust in input: buffer over-
flows, cross-site scripting attacks,
SQL injection, cache poisoning, and
basically all the low-hanging fruit
the script kiddies love so much.

API abuse
An API is a contract between a caller
and a callee: the most common forms
of API abuse occur when the caller
fails to honor its end of the contract.
If a program fails to call chdir()
after calling chroot(), for exam-
ple, it violates the contract that speci-
fies how to securely change the active
root directory. Another good exam-
ple of library abuse is expecting the
callee to return trustworthy DNS in-
formation to the caller. In this case,
the caller abuses the callee API by
making certain assumptions about its
behavior. Really bad people also vio-
late the caller–callee contract from
the other side—for example, if you

KATRINA

TSIPENYUK AND

BRIAN CHESS

Fortify
Software

GARY

MCGRAW

Cigital

T
axonomies can help software developers and security

practitioners understand the common coding mis-

takes that affect security. The goal is to help develop-

ers avoid making these mistakes and more readily

identify security problems whenever possible. Because developers

Seven Pernicious
Kingdoms: A Taxonomy
of Software Security Errors

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY 81

Building Security In
Editor: Gary McGraw, gem@cigital.com

Building Security In

subclass SecureRandom and return
a not-so-random value, you’re not
following the rules. API abuse cate-
gories are very common.

Security features
Software security isn’t security soft-
ware. All the magic crypto fairy dust
in the world won’t make your code
secure, but it’s also true that you can
drop the ball when it comes to essen-
tial security features. Let’s say you de-
cide to use the Secure Sockets Layer
(SSL) to protect traffic across the net-
work, but you really screw things up.
Unfortunately, this happens all the
time. When we chunk together secu-
rity features, we’re concerned with
topics like authentication, access
control, confidentiality, cryptogra-
phy, privilege management, and all
that other stuff on the CISSP exam.
This stuff is hard to get right.

Time and state
Distributed computation is about
time and state—that is, for more
than one component to communi-

cate, state must be shared (some-
how), which takes time. Playing
with time and state is the biggest un-
tapped natural attack resource on the
planet right now.

Most programmers anthropo-
morphize (or, more accurately, only
solipsistically ponder) their work.
They think of themselves as the single
omniscient thread of control, plod-
ding along and carrying out the entire
program in the same way they would
if forced to do the job manually. How
quaint. Modern computers switch
between tasks very quickly, and in
multi-core, multi-CPU, or distrib-
uted systems, two events can occur at
exactly the same time. Defects related
to unexpected interactions between
threads, processes, time, and informa-
tion rush to fill the gap between the
programmer’s model of how a pro-
gram executes and what happens in
reality. Several interactions happen
via shared state—semaphores, vari-
ables, the file system, the universe,
and, basically, anything that can store
information.

Errors
Want to break software? Throw
some junk at a program and see what
errors you cause. Errors are not only a
great source of “too much informa-
tion” from a program, they’re also a
source of inconsistent thinking that
can be gamed. It gets worse: in mod-
ern object-oriented systems, the no-
tion of exceptions has reintroduced
the banned concept of goto. Alas.

Errors and error handlers repre-
sent a class of programming contract,
so in some sense, errors represent the
two sides of a special form of API.
However, the security defects re-
lated to error handling are so com-
mon they deserve a special kingdom
all to themselves. As with API abuse,
you can blow it in one of two ways:
forgetting to handle errors at all (or
handing them so roughly that they
get all bruised and bloody) or pro-
ducing errors that give out way too
much information (to possible at-
tackers) or are so radioactive that no-
body wants to handle them.

Code quality
Security is a subset of reliability, just
as all future TV shows are a subset of
monkeys banging out scripts on zil-
lions of keyboards. If you can com-
pletely specify your system and all of
its positive and negative security
possibilities, then security is a subset
of reliability. Poor code quality leads to
unpredictable behavior, and from a
user’s perspective, this often mani-
fests itself as poor usability. For an at-
tacker, bad quality provides an
opportunity to stress the system in
unexpected ways.

Encapsulation
Encapsulation is about drawing strong
boundaries around things and set-
ting up barriers between them. In a
Web browser, this might mean en-
suring that mobile code can’t whack
your hard drive arbitrarily. On a Web
services server, it might mean differ-
entiating between valid authenti-
cated data and mystery data found
stuck like yesterday’s gum to the bot-

82 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

Building Security In

tom of a desk. Some of the most im-
portant boundaries today come be-
tween classes with various methods.
Trust models require careful and
meticulous attention to bound-
aries—in other words, keep your
hands off my stuff!

Environment
Hey, it turns out that software runs
on machines with certain bindings
and connections to the bad, mean
universe. Getting outside the soft-
ware is important. This kingdom is
the kingdom of outside�in, and it
includes all the stuff outside your
code that’s still critical to the security
of the software you create.

The phyla
To better understand the relation-
ship between kingdoms and phyla,
consider a recently discovered vul-
nerability in Adobe Reader 5.0.x for
Unix. The vulnerability is found in a
function called UnixAppOpen

FilePerform(), which copies
user-supplied data into a fixed-size
stack buffer via a call to
sprintf(). If the size of the user-
supplied data is greater than the size
of the buffer it’s copied into, impor-
tant information (including the stack
pointer) is overwritten. Thus by
supplying a malicious PDF file, an
attacker can execute arbitrary com-
mands on a target system. This attack
is possible because of a simple coding
error—the absence of a check that
ensures that the user-supplied data is
no larger than the size of the destina-
tion buffer. Developers associate this
check with a failure to code defen-
sively around the call to
sprintf(). We classify it accord-
ing to the attack it enables—buffer
overflow. In our taxonomy, we
would choose input validation and rep-
resentation as the kingdom to which
the buffer overflow phylum belongs
because the lack of proper input val-
idation is the attack’s root cause.
(Due to space constraints, we can’t
list all the phyla here; visit http://
vulncat.fortifysoftware.com for full

descriptions listed under their re-
spective kingdoms.)

Static source-code analysis tools
can help detect phyla-represented
coding errors. Source-code analysis
also gives developers the opportu-
nity to get quick feedback about the
code they’re writing as they’re writ-
ing it. Our new taxonomy includes
coding errors that occur in a variety
of programming languages, the
most important of which are C and
C++, Java, and the .NET family
(including C# and ASP). Some of
the phyla are language-specific be-
cause the types of errors they repre-
sent are applicable only to specific
languages, and some are frame-
work-specific (for the same reason).
The phylum list as it exists is cer-
tainly incomplete, but it’s adaptable
to changes in the trends and discov-
eries of new defects that are bound
to happen over time, unlike various
existing classification schemes.
Classifying which errors are most
important to real-world enterprise
developers is the most important
goal of this taxonomy—most of the
information in it is derived from the
literature, various colleagues, and
hundreds of customers.

Lists, piles,
and collections
The idea of collecting and organiz-
ing information about computer se-
curity vulnerabilities has a long
history, and several practitioners
have even developed “top 10” lists
and other related collections based
on experience in the field. The tax-
onomy introduced here negotiates a
middle ground between rigorous
academic studies and ad hoc collec-
tions based on experience.

Two of the most popular and
useful lists are the “19 sins” and the
“Open Web Application Security
Project (OWASP) top 10.” The first
list is carefully described in the new
book 19 Deadly Sins of Software Secu-
rity,3 and the OWASP Top 10 Most
Critical Web Application Security
Vulnerabilities is available at www.

owasp.org/documentation/topten.
html. The main limitation of both
lists is that they mix specific types of
errors and vulnerability classes and
talk about them all at the same level
of abstraction. The 19 sins, for ex-
ample, include both “buffer
overflows” and “failing to protect
network traffic” categories at the
same level, even though the first is a
very specific coding error, whereas
the second is a class comprising var-
ious kinds of errors. Similarly,
OWASP’s top 10 includes “cross-
site scripting (XSS) flaws” and “in-
secure configuration management”
at the same level. This unnecessary
level confusion is a serious problem
that can lead to confusion among
practitioners. Although our classifi-
cation scheme is quite different
from the lists described earlier, we
can easily map the categories that
comprise these lists to our kingdoms
(see Table 1).

T he seven pernicious kingdoms
offer a simple, effective organiz-

ing tool for software security coding
errors, and with more than 60
clearly defined phyla,4 this taxon-
omy is both powerful and useful. But
taxonomy work is an ongoing quest,
and further refinement and evolu-
tion is necessary. Please send any
feedback regarding this taxonomy to
brian@fortifysoftware.com.

References
1. G. Hoglund and G. McGraw,

Exploiting Software: How to Break
Code, Addison-Wesley, 2004.

2. G. Miller, “The Magic Number
Seven, Plus or Minus Two,” The
Psychological Rev., vol. 63, 1956, pp.
81–97; www.well.com/user/
smalin/miller.html.

3. M. Howard, D. LeBlanc, and J.
Viega, 19 Deadly Sins of Software
Security, McGraw-Hill, 2005.

4. K. Tsipenyuk, B. Chess, and G.
McGraw, “Seven Pernicious
Kingdoms: A Taxonomy of Soft-
ware Security Errors,” to be pub-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 83

Building Security In

lished in Proc. NIST Workshop on
Software Security Assurance Tools,
Techniques, and Metrics (SSATTM),
US Nat’l Inst. Standards and Tech-
nology, 2005.

Katrina Tsipenyuk is the founding mem-
ber of the Security Research Group at For-
tify Software. She has a BS and an MS in
computer science with an emphasis on
security from the University of California,
San Diego. Her thesis work includes
research on mobile agent security. Con-
tact her at katrina@fortifysoftware.com.

Brian Chess is chief scientist at Fortify
Software. His work focuses on practical
methods for creating secure systems.
Chess has a PhD in computer engineer-
ing from the University of California,
Santa Cruz, where he applied his back-
ground in integrated circuit test and ver-
ification to the problem of identifying
security-relevant defects in software. Con-
tact him at brian@fortifysoftware.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

84 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

KINGDOMS 19 SINS OPEN WEB APPLICATION SECURITY
PROJECT (OWASP) TOP 10

Input validation and representation Buffer overflows, command injection, cross-site Buffer overflows, cross-site scripting flaws,

scripting, format string problems, integer range injection flaws, unvalidated input

errors, SQL injection

API abuse Trusting network address information

Security features Failing to protect network traffic, failing to store Broken access control, insecure storage

and protect data, failing to use cryptographically

strong random numbers, improper file access,

improper use of SQL, use of weak password-based

systems, unauthenticated key exchange

Time and state Signal race conditions, use of “magic” URLs and Broken authentication and session

hidden forms management

Errors Failure to handle errors Improper error handling

Code quality Poor usability Denial of service

Encapsulation Information leakage

Environment Insecure configuration management

Table 1. Mapping 19 sins and the OWASP top 10 to the proposed kingdoms.

Ensure that your networks operate safely
and provide critical services even in the face

of attacks. Develop lasting security solutions,
with this peer-reviewed publication.

Top security professionals in the field share
information you can rely on:

Wireless Security • Securing the Enterprise • Designing
for Security Infrastructure Security • Privacy Issues

• Legal Issues • Cybercrime • Digital Rights Management • In-
tellectual Property Protection and Piracy • The Security Profes-

sion • Education

Order your subscription today.

www.computer.org/security/

BE SECURE.

DON’T RUN THE RISK.

BE SECURE.

DON’T RUN THE RISK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

