
among business units and thus not
even practiced in a cohesive, coher-
ent manner. In the worst cases, busy
business unit executives trade roving
bands of developers like Pokémon
cards in a fifth-grade classroom (in an
attempt to get ahead). Suffice it to
say, none of this is good.

The disconnect between secu-
rity and development has ultimately
produced software development ef-
forts that lack any sort of contem-
porary understanding of technical
security risks. Today’s complex and
highly connected computing envi-
ronments trigger myriad security
concerns, so by blowing off the idea
of security entirely, software
builders virtually guarantee that
their creations will have way too
many security weaknesses that
could—and should—have been
avoided. This article presents some
recommendations for solving this
problem. Our approach is born out
of experience in two diverse fields:
software security and information
security. Central among our rec-
ommendations is the notion of
using the knowledge inherent in in-
formation security organizations to
enhance secure software develop-
ment efforts.

Don’t stand
so close to me
Best practices in software security in-
clude a manageable number of sim-
ple activities that should be applied
throughout any software develop-
ment process (see Figure 1). These
lightweight activities should start at
the earliest stages of software devel-
opment and then continue through-
out the development process and
into deployment and operations.

Although an increasing number
of software shops and individual de-
velopers are adopting the software
security touchpoints we describe
here as their own, they often lack the
requisite security domain knowl-
edge required to do so. This critical
knowledge arises from years of ob-
serving system intrusions, dealing
with malicious hackers, suffering the
consequences of software vulnera-
bilities, and so on. Put in this posi-
tion, even the best-intended
development efforts can fail to take
into account real-world attacks pre-
viously observed on similar applica-
tion architectures. Although recent
books1,2 are starting to turn this
knowledge gap around, the science
of attack is a novel one.

Information security staff—in

particular, incident handlers and
vulnerability/patch specialists—
have spent years responding to at-
tacks against real systems and
thinking about the vulnerabilities
that spawned them. In many cases,
they’ve studied software vulnerabili-
ties and their resulting attack profiles
in minute detail. However, few in-
formation security professionals are
software developers (at least, on a
full-time basis), and their solution
sets tend to be limited to reactive
techniques such as installing software
patches, shoring up firewalls, updat-
ing intrusion detection signature
databases, and the like. It’s very rare
to find information security profes-
sionals directly involved in major
software development projects.

Sadly, these two communities of
highly skilled technology experts
exist in near complete isolation, yet
their knowledge and experience
bases are largely complementary.
Finding avenues for interdisciplinary
cooperation will likely bear fruit in
the form of fielded software that’s bet-
ter equipped to resist well-known and
easily predicted attacks. A secondary
benefit of any interdisciplinary coop-
eration is gaining information secu-
rity personnel with a much better
understanding of the applications that
they’re tasked with protecting.

Every silver lining’s
got a touch of gray
A complete description of every
software security best practice is far
beyond this article’s scope, but we
can provide a high-level description

KENNETH R.
VAN WYK

Cigital and
KRVW
Associates

GARY

MCGRAW

Cigital

T
raditionally, software development efforts in large

corporations have been about as far removed from

information security as they were from human re-

sources or any other business function. Software de-

velopment has also had the tendency to be highly distributed

Bridging the Gap between
Software Development
and Information Security

64 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In
Editor: Gary McGraw, gem@cigital.com

Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 65

of the most effective software secu-
rity touchpoints available today.

Requirements:
Abuse cases
The concept of abuse case develop-
ment is derived from use case devel-
opment. In an abuse case, the
developer considers software’s delib-
erate misuse and ponders its corre-
sponding effect. When addressing
user input, for example, the devel-
oper can construct a series of abuse
cases that describes in some detail
how malicious users can and will at-
tempt to overflow input buffers, in-
sert malicious data, and so on. An
abuse case depicts these scenarios as
well as how the software should re-
spond to them. As with their use case
counterparts, each abuse case then
drives a requirement and correspond-
ing test scenario for the software.

Design: Business
risk analysis
Assessing the business impact likely
to result from a successful software
compromise is a critical undertak-
ing. If no one explicitly tackles this
issue, a security analysis will fall short
in the “who cares?” department. A
good risk analysis considers ques-
tions of the project’s cost to the par-
ent organization sponsoring the
software in terms of both direct cost
(liability, lost productivity, and re-
work) and indirect cost (reputation
and brand damage).

Design:
Architectural risk analysis
Similar to a business risk analysis, an
architectural risk analysis assesses the
technical security exposures in an ap-
plication’s proposed design and links
them to business impact. Starting
with a high-level depiction of the de-
sign, the analysis team considers each
module, interface, interaction, and so
forth against known attack method-
ologies and their likelihood of suc-
cess. To provide a forest-level view of
a software system’s security posture,
the analysts typically apply such

analyses against a design’s individual
subcomponents as well as to the de-
sign as a whole. Attention to security’s
holistic aspects is paramount: at least
50 percent of all security defects are
architectural in nature.

Test planning: Security
functionality testing
Just as testers typically use functional
specifications and requirements to
create test scenarios and test plans
(especially those testers who under-
stand the critical notion of require-
ments traceability), security-specific
functionality should be used to de-
rive tests against the target software’s
security functions. These kinds of
investigations generally include tests
that verify security features such as
encryption, user identification, log-
ging, confidentiality, authentication,
and so on. These are “positive” se-
curity features for white hats.

Test planning:
Risk-driven testing
Thinking like a good guy isn’t
enough: you have to don your
black hat and think like a bad guy.
Risk-based test scenarios are the
natural result of the process of as-
sessing and prioritizing software’s
architectural risks. Each architec-
tural risk and abuse case considered
should be described and docu-
mented down to a level that clearly
explains how an attacker might go

about exploiting a weakness and
compromising the software. Such
descriptions can help generate a
priority-based list of test scenarios
for later “adversarial” testing.

Implementation:
Code review
The design-centric activities de-
scribed thus far focus on architec-
tural flaws built into software design,
but they completely overlook im-
plementation bugs that the coders
might introduce during coding. Im-
plementation bugs are both numer-
ous and common (just like real bugs
in the Virginia countryside) and can
include nasty creatures such as the
notorious buffer overflow, which
owes its existence to the use (or mis-
use) of vulnerable APIs. Code re-
view processes—both manual and
(even more important) automated
with a static analysis tool—attempt
to identify security bugs prior to the
software’s release.

System testing:
Penetration testing
System penetration testing, when
used appropriately, focuses on
human and procedural failures made
during the software’s configuration
and deployment. The best kinds of
penetration testing are driven by
previously identified risks and are
engineered to probe risks directly to
ascertain their exploitability.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 65

Figure 1. Software security best practices or “touchpoints.” Although the software
artifacts are laid out according to a traditional waterfall model, most organizations
follow an iterative approach today: best practices are cycled through more than once
as the software evolves.

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Code
review
(tools)

Risk
analysis

Penetration
testing

Security
operations

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Building Security In

Fielded system:
Deployment
and operations
Careful configuration and cus-
tomization of any software applica-
tion’s deployment environment can
greatly enhance its security posture.
Designing a smartly tailored deploy-
ment environment for a program re-
quires following a process that starts at
the network-component level, pro-
ceeds through the operating system,
and ends with the application’s own
security configuration and setup.

Kumbaya (for
software security)
With the software security touch-
points we’ve just listed in mind, let’s
turn to the issue at hand: how infor-
mation security professionals can best
participate in the software develop-
ment process. If you’re a CISSP, an
operational security professional, or a
network administrator, this Bud’s for
you. Let’s go back through the activ-
ities we just covered and give some
recommendations relevant to both
software developers and information
security practitioners.

Abuse cases
Folding information security into
abuse case development is such low-
hanging fruit that the fruit itself is
dirt-splattered from the latest thun-
derstorm. Simply put, information
security professionals come to the
table with the (rather unfortunate)
benefit of having watched and dis-
sected years of attack data, built
forensics tools,3 created profiles of
attackers, and so on. This might
make them jaded and surly, but at
least they intimately know what
they’re up against.

Many abuse case analysis efforts
begin with brainstorming or “white
boarding” sessions during which the
development team describes an ap-
plication’s use cases and functional
requirements while a room full of
experts pontificate about how an at-
tacker might attempt to abuse the
system. Properly participating in

these exercises involves carefully and
thoroughly considering similar sys-
tems and the successful attacks
against them. Getting past your own
belly button is especially important
to abuse case success, so consider
other domains that could be relevant
to the application under review
while you’re at it. Once again, real
battle experience is critical. Infor-
mation security people are likely to
find (much to their amusement) that
the software developers in the room
are blissfully unaware of many of the
attack forms found daily beyond the
network perimeter. Of course,
many of the uninformed are also
naturally skeptical unbelievers.
While converting these skeptics, try
to avoid succumbing to the ten-
dency toward hyperbole and exag-
geration that is unfortunately
common among security types.
There’s nothing worse than a blus-
tery security weenie on his high
horse about some minor skirmish.
Don’t overstate the attacks you’ve
seen and studied, just stick to the
facts and be prepared to back up
your statements with actual exam-
ples. Knowledge of actual software
technology a plus.

Business risk analysis
The most important people to con-
sult when assessing software-in-
duced business risks are the business
stakeholders behind the software. In
organizations that already practice
business-level technology analysis,
this tends to be quite well under-
stood. (Unfortunately, technological
assessment of the business situation
stops well before the software level in
most of these organizations.) En-
hancing a standard approach is easy
with a few additional questions:
What do the people asking for this
software think about security? What
do they expect? What are they try-
ing to accomplish that a successful
attack might thwart? What worries
them about security?

The value information security
professionals bring to answering

these questions comes from their
wealth of experience in seeing secu-
rity impacts first-hand when similar
business applications were compro-
mised. It gives them the opportu-
nity to knowledgeably answer
several other security-related ques-
tions: What sorts of costs have simi-
lar companies incurred from
attacks? How much downtime was
involved? What was the resulting
publicity in each case? In what ways
was the organization’s reputation
tarnished? Information security
people can provide input and flesh
out a conversation with relevant sto-
ries. Here again, take care to not
overstate the facts. When citing in-
cidents at other organizations, be
prepared to back up your claims
with news reports and other third-
party documentation.

Architectural risk analysis
Now we’re getting to the technical
heart of the software development
process. For architectural risk analy-
sis to be effective, security analysts
must possess a great deal of technol-
ogy knowledge covering both the
application and its underlying plat-
form, frameworks, languages, func-
tions, libraries, and so on. The most
effective information security team
member in this situation is clearly
one who is a technology expert with
solid experience around particular
software tools. With this kind of
knowledge under his or her belt, the
information security professional
can provide real-world feedback
into the process. If the analysis team
is discussing a particular network en-
cryption protocol’s relative strengths
and weaknesses, for example, infor-
mation security can provide per-
spective to the conversation. All
software has potential weaknesses,
but was component X involved in
any actual attacks? Are there known
vulnerabilities in the protocol the
project is planning to use? Is a com-
mercial off-the-shelf component or
platform a popular attacker target?
Or does it have a stellar reputation

66 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2005

Building Security In

and only a handful of properly han-
dled published vulnerabilities and
known attacks? Feedback of this sort
is extremely useful for prioritizing
risk and weaknesses as well as for de-
ciding on what, if any, mitigation
strategies to pursue.

Test planning
Although test planning and execu-
tion are generally performed by qual-
ity assurance (QA) and development
groups, testing represents another op-
portunity for information security to
have a positive impact. Testing—es-
pecially risk-based testing—must not
only cover functionality, it should
closely emulate the steps that an at-
tacker will take when breaking a tar-
get system. Highly realistic scenarios
(the security analog to real user sce-
narios) are much more useful than ar-
bitrary pretend “attacks.”
Standard-issue testing organizations,
if they’re effective at all, are most ef-
fective at designing and performing
tests based on functional specifica-
tions. Designing risk-based test sce-
narios is a rather substantial departure
from the status quo and should bene-
fit from the experience base of secu-
rity incident handlers. In this case,
information security professionals
who are good at “thinking like a bad
guy” are the most valuable resources.

Code review
By its very nature, code review re-
quires knowledge of code. An infor-
mation security practitioner with
little experience writing and com-
piling software is of little use during a
code review. If you don’t know what
it means for a variable to be declared
in a header or an argument to a
method to be static/final, staring at
lines of code all day isn’t going to
help. Because of this, the code re-
view step is best left in the hands of
the development organization, es-
pecially if it’s armed with a modern
source-code analysis tool. With the
exception of information security
people who are highly experienced
in programming languages and

code-level vulnerability resolution,
there is no natural fit for network se-
curity expertise during the code re-
view phase. This might come as a
great surprise to those organizations
currently attempting to impose soft-
ware security on their enterprise
through the information security di-
vision. Although the idea of security
enforcement is solid, making en-
forcement at the code level success-
ful when it comes to code review
requires real hands-on experience
with code. It’s definitely not suffi-
cient to arm the information secu-
rity team with a static code scanner
and expect them to deliver substan-
tive feedback to the coders.

Penetration testing
Although testing software to a func-
tional specification has traditionally
been QA’s domain, penetration test-
ing is usually the domain of informa-
tion security and incident-handling
organizations. As such, the fit here
for information security participa-
tion is very natural and intuitive. Of
course, several subtleties can’t be ig-
nored. Most penetration testing
today focuses its attention on net-
work topology, firewall placement,
communications protocols, and the
like, thus it’s an outside�in ap-
proach that barely begins to scratch
an application’s surface. Penetration
testing must encompass a more in-
side�out approach that takes into
account risk analyses and other soft-
ware security results as it’s per-

formed. This distinction is
sometimes described as the differ-
ence between “network penetration
testing” and “application penetra-

tion testing.” Software security is
much more interested in the latter.

Also worth noting is the use of
various black-box penetration tools.
Network security scanners such as
nessus, nmap, SATAN, and the like
are extremely useful because of the
countless ways in which to config-
ure (and misconfigure) complex
networks and their various services.
Application security scanners are
nowhere near as useful, so if by an
“application penetration test” you
mean running an application secu-
rity testing tool and gathering the re-
sults, you have a long way to go to
make your approach hold water. It
goes almost without saying that soft-
ware testing isn’t something that a set
of canned tests can handle, no matter
how large the can. The idea of test-
ing any arbitrary program with, say, a
few thousand tests determined in
advance before the software was
even conceived is ridiculous. The
idea of testing any arbitrary program
with a few hundred application se-
curity tests is just as silly.

The good news about penetra-
tion testing and information security
involvement is that it’s most likely al-
ready underway. The bad news is
that information security must up its
level of software clue to most effec-
tively perform penetration testing.

Deployment
and operations
Many software developers would
argue that deployment and opera-

tions aren’t even part of the soft-
ware development process. Even if
this view is correct, we can’t prop-
erly address operations and deploy-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 67

Software developers and information security

staff can benefit greatly from the respective

experiences of the other.

Building Security In

68 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2005

ment concerns if the software is so
poorly constructed that it falls apart
no matter what kind of solid
ground we place it on. Put bluntly,
operations organizations have put
up with some rather stinky soft-
ware for a long time, which has
made them wary. If we can set that
argument aside for a moment and
look at the broader picture—that
is, safely setting up the application
in a secure operational environ-
ment and running it accordingly—
then the work that needs doing can
certainly be positively affected by
information security. The best op-
portunities exist in fine-tuning ac-
cess controls at the network and
operating system levels, as well as in
configuring an event-logging and
monitoring mechanism that’s most
effective during incident response
operations. Attacks will happen, so
be prepared to clean up the mess af-
terwards. This advice is pretty
much a “no duh” for information
security organizations, which is
why their involvement in this step
is so important.

Come together
(right now)
Even if you accept our recommen-
dations wholesale as worthy, the act
of aligning information security and
software development is a serious
undertaking (and not one for the
faint of heart). Close cooperation
with the development organization
is essential to success. If developers
perceive information security peo-
ple to be the security police or
“those people with sticks who show
up every once in a while and beat us
soundly for reasons we don’t under-
stand,” you have a problem that must
be addressed.

In many cases, developers are
more than willing to accept guid-
ance and advice from information
security people who know what
they’re talking about. One problem
is that they don’t know who to talk
to, who might help them, and who
might just be a blowhard security

weenie. To fix this problem, the first
step for any of you information se-
curity professionals who want to
help out with development efforts
should be to reach out to the devel-
opers, roll up your sleeves, and offer
to assist.

Once you’ve made the develop-
ers aware of your willingness to help,
consider taking small steps toward
the goals laid out in this article.
Rather than trying to become in-
volved in every phase all at once in a
giant world-changing endeavor, try
one at a time. Be careful not to over-
whelm the overall system by at-
tempting to make too many changes
at once.

Another positive step is for the
information security troops to take
the time to learn as much as they can
about software development in gen-
eral and their organization’s software
development environment in partic-
ular. Study and learn about the types
of applications your software people
develop, why they’re doing it (that is,
for what business purpose the soft-
ware is being built), what languages,
platforms, frameworks, and libraries
are being used, and so on. Showing
up with a clue is much better than
showing up willing but clueless.
Software people aren’t the most pa-
tient people on the planet, and you
often have only one shot at getting
involved. If you help, that’s great, but
if you hinder, it’ll be the last time
they talk to you.

In the end, success or failure is as
likely to be driven by the personali-
ties of the people involved as any-
thing else. Success will certainly not
be guaranteed, even with the best of
intentions and the most careful plan-
ning. Beer helps.

T he interesting thing about soft-
ware security is that it appears to

be in the earliest stages of develop-
ment, much as the field of informa-
tion security itself was 10 or so years
ago. The security activities de-
scribed here discuss only the tip of

the best practice iceberg, but the
good news is that these best prac-
tices are emerging at all. Naturally,
the software security discipline will
evolve and change with time, and
best practices and advice will ebb
and flow like the tides at the beach,
but the advice here is likely to bear
fruit for some time.

The recommendations in this ar-
ticle are based on years of experience
with a large dose of intuition thrown
in for good measure. We’ve pre-
sented them in the hopes that others
will take them, consider them, adjust
them, and attempt to apply them in
their organizations. We believe that
software developers and information
security staff can benefit greatly from
the respective experiences of the
other, but much work will need to
be done before the practical recom-
mendations made here prove them-
selves to be as useful in practice as we
believe they will be.

References
1. G. Hogland and G. McGraw,

Exploiting Software: How to Break
Code, Addison-Wesley, 2004.

2. J. Koziol et al., The Shellcoder’s
Handbook: Discovering and Exploit-
ing Security Holes, John Wiley &
Sons, 2004.

3. D.Farmer and W. Venema, Forensic
Discovery, Addison-Wesley, 2004.

Kenneth R. van Wyk is a principal con-
sultant at KRvW Associates and director
of research at Cigital. His interests include
software security and incident-handling.
Van Wyk has a BS in mechanical engi-
neering from Lehigh University. Contact
him at ken@krvw.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son- Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

