
Attack Trends
Editors: David Ahmad, drma@mac.com
Iván Arce, ivan.arce@coresecurity.com

found in tens of millions of homes.
Along with the Internet’s phe-

nomenal growth comes plenty of
adolescent growing pains, and as
IEEE Security & Privacy readers
know, these pains mostly concern
problematic and pervasive com-
puter security issues. Online
games—especially massively multi-
player online role-playing games
(MMORPGs)—suffer from such
security problems directly; exam-
ples of MMORPGs include World
of Warcraft, Second Life, Ever-
Quest, EVE Online, Star Wars
Galaxy, Lineage, and Ultima Online.

In this short introduction to
MMORPG security, we focus on
bugs involving time and state. We
can expect to see more of such bugs
as real-world software evolves to be-
come more like game software.

Massively
distributed systems
From an attack trends perspective,
online games are noteworthy due to
their architectures and the resulting
security issues. MMORPGs are
made of very sophisticated software
built around a massively distributed
client-server architecture. (By “mas-
sive,” we mean more than 400,000 fat
clients running complex game soft-
ware connected simultaneously to
banks of central servers. Because

these games push the limits of soft-
ware technology, especially when it
comes to state and time (not to men-
tion the real-time interaction of hun-
dreds of thousands of users), they’re
particularly interesting as a case study
in software security. In fact,
MMORPGs are a harbinger of tech-
nical software security issues to come.

Modern software of all kinds (not
just game software) is evolving to be
massively distributed, with servers
interacting with thousands of users
at once. The move to Web services
and service-oriented architecture
(SOA) built with technologies like
Ajax and Ruby follows hard on the
heels of online games. What we
learn in the MMORPG security
world today is bound to be widely
applicable tomorrow in every other
kind of software.

Adding to the urgency of the
security problem is the fact that
online games are big business. The
most popular MMORPG in the
world, Blizzard Entertainment’s
World of Warcraft, has more than
nine million users, each of whom
pay US$14 a month for the privilege
of playing.

Inside MMORPGs’ virtual
worlds , simple data structures have a
value, mostly a reflection of the time
gamers spend playing the game.
Players also accumulate and trade

virtual wealth, such as play money
and pretend goods and services.
Many virtual game economies have
per capita GDPs greater than most
small nations.1 Not surprisingly,
large numbers of direct connections
exist between the virtual economies
of games and the real economy. A
well-developed middle market also
exists, with the largest company,
IGE (www.ige.com) earning more
than US$400 million per year by
acting as the real-world “middle
man” for virtual goods. Virtual
economies make excellent money-
laundering systems, as well. Sheer
economics has led to the emergence
of a class of players more interested in
wringing virtual wealth out of the
game than playing the game itself.
Entire industries of sweatshops with
hundreds of thousands of workers in
China now exist to do just that.1

Wherever money is at stake, crim-
inals gather and linger. In the case of
MMORPGs, cheaters have real eco-
nomic incentive to break the games’
security and accumulate virtual items
or gain experience points for their
characters. Many of these items, and
even the characters themselves, are
then sold off to the highest bidder.

Sophisticated hackers have
worked the fertile fields of
MMORPGs for years, some of
them making a living directly from
gaming (or cheating at gaming).

Time and state
bugs in games
Bugs and flaws in software account
for a majority of computer security
risks. (Other work provides discus-
sions about the difference between
bugs—found at the implementation
level in software—and flaws—found

GARY

MCGRAW

Cigital

GREG

HOGLUND

HBGary

O
nline games have taken the computer world by

storm. Gaming has always been (and remains) a

prime driver of PC technology, with deep pen-

etration into the consumer market. In the past

10 years, it has grown as quickly as the Internet, and can now be

Online Games and Security

76 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY

Attack Trends

at the architectural level.2) This is true
for banking applications, and it’s also
true for online games. So many secu-
rity-related bugs exist in software, and
they’re so pervasive, that software tool
vendors have created special tools just
to look for them. Complicating the
situation somewhat, scientists have
published reams of papers on tax-
onomies for bugs, all of which dis-
agree with each other.

The most interesting and tricky
security bugs involve time and state
problems tangled in complex trust
models. These problems arise be-
cause complex system state must be
shared among many distributed
processors with different levels of
trustworthiness. This category of
bugs is particularly relevant because
it’s also a harbinger of what to expect
in the future as SOA catches on.
Timing and synchronization prob-
lems are already a major issue in real-
world software—in fact, security
practitioners have discussed them for
more than a decade. But as massively
distributed systems become more
common and trust models get more
complex, problems with synch-
ronizing and tracking state will
likewise become more common.
Thanks to online games’ overall de-
sign, they’re rife with time and state
problems. Add to this the notion

that servers shouldn’t implicitly trust
the game client itself, and you have a
formula for disaster.

In an online game like World of
Warcraft, the biggest architectural
challenge is sharing state informa-
tion about the game with hundreds
of thousands of client programs all at
once. When so many thousands of
client processes interweave on a
common server, over the network,
in real time, state confusion attacks
pop up like mushrooms after a rain.
In fact, race conditions (which we’ll
examine in more detail later) and
other problems with state are the
primary source of bugs in online
games. They’re exacerbated by laggy
network connections (which tend
to warp time in interesting ways …
sort of like black holes). By their very
design, large online games require
vast amounts of data storage distrib-
uted across many servers. Some
servers store accounting information
for billing, others store player statis-
tics and inventory, and still others
store the current state of an online
world. However, the most serious
problems crop up when state infor-
mation is “cracked off” and shipped
to untrusted game clients. Most
game designers have chosen to ig-
nore the “insider threat” of a game
client gone bad. As a result, some

state manipulation attacks can be as
simple as directly hacking the para-
meters controlled by the game client
software. (For more on insider threats
like this see www.darkreading.com/
document.asp?doc_id=131477&
WT.svl=column1_1.).

Technically, most MMORPG’s
don’t really involve single monolithic
online worlds, but rather have many
duplicate “shards” of what only seems
to be a “world.” Copies of the online
world that World of Warcraft uses, for
example, tend to limit the number of
users to 50,000 players per server.
EVE Online (www.eve-online.com)
is a single online world, but that virtual
world is distributed across such a large
universe (think solar systems) that no
one server ever gets overloaded.

The problem with multiple
world shards is boundaries. Race
conditions are found on the borders
between software states—such as the
state of being logged in and the state
of being logged out. If everything
happens atomically—that is, if you
go from being logged in to being
logged out in one fell swoop with-
out gazillions of steps, things can go
all right. But if multiple steps are in-
volved, and they aren’t protected by
semaphores in “critical sections,”
trouble can crop up.

The sidebar “Race conditions

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 77

Race conditions 101

Let’s say that Alice and Bob work at the same company. Over

email, they decide to meet for lunch, agreeing to meet in the

lobby at noon. However, they don’t agree on whether they meant

the lobby of their office or the building lobby several floors below.

At 12:15, Alice is standing in the company lobby by the elevators,

waiting for Bob. It then occurs to her that Bob might be waiting

for her in the building lobby, on the first floor. Her strategy for

finding Bob is to take the elevators down to the first floor to see if

Bob is there.

If Bob’s there, all is well. If he isn’t, can Alice conclude that Bob is

late or has stood her up? No. Bob could have been sitting in the

lobby, waiting for Alice. At some point, it could have occurred to him

that Alice might be waiting upstairs, at which point he would have

taken an elevator to check. If Alice and Bob were both on different

elevators at the same time, they’d pass each other during the ride.

When Bob and Alice each assume that the other one is in the

other place and both take the elevator, they’ve been bitten by a

race condition. A race condition occurs when an assumption needs

to hold true for a period of time, but actually might not; whether it

does or doesn’t is a matter of exact timing. Every race condition

has a window of vulnerability—that is, a period of time during

which violating the assumption will lead to incorrect behavior. In

Alice and Bob’s case, the window of vulnerability is approximately

twice the length of an elevator ride. Alice can step on the elevator

up until the point at which Bob’s elevator is about to arrive and

still miss him. Bob can step on the elevator up until the point that

Alice’s elevator is about to arrive. We could imagine the door to

Alice’s elevator opening just as Bob’s door shuts. When the

assumption is broken, leading to unexpected behavior, then the

race condition has been exploited.

Attack Trends

101” gives a simple example of a race
condition that can happen in the real
world. Who knows, maybe this has
even happened to you?

Telehacking:
A simple state
manipulation attack
Virtual worlds in online games seem
real, but in fact, they’re only as solid
as the models on which they’re built.
Characters can travel through the
game in many different ways: flying,
swimming, teleporting, running,
and walking are just some standard
options. Many games even have
magic spells to enhance all your
travel needs.

The state machine that manages
travel is usually held in the client
software, along with almost all of the
3D object interaction. By altering
the client, you can alter how you
travel. For this reason, many com-
mon game exploits modify the way
the client program handles travel.

One simple and elegant example
of state manipulation involves find-
ing and resetting the player charac-
ter coordinates in an online game.
As in many MMORPGs, your
character’s coordinates in World of
Warcraft are part of the state infor-
mation controlled by the game
client. Instead of walking around
the world (or moving normally), a
cheating gamer can teleport by di-
rectly manipulating the location pa-
rameters in memory.

If the character location coordi-
nates set in this manner aren’t very
far from the current location, this
kind of action can even appear to be
normal movement. Telehacking uses
the direct player character location-

setting method, but it usually refers
to teleporting over vast regions of
the game map, as opposed to small
teleports to correct for position

within a few virtual yards. (You can
find the code for telehacking in
World of Warcraft in our book
Exploiting Online Games; www.
exploitingonlinegames.com.) Over-
writing a single byte in World of
Warcraft’s client code can enable a
character to climb mountains—or
even climb straight up walls. Of
course, gamers use this hack to get
into places they’re not supposed to
get into.

Using bugs to confuse
state boundaries
Telehacking in World of Warcraft is
a very simple example of state ma-
nipulation, but time- and state-re-
lated problems can be much more
complex. Plenty of software-re-
lated state boundaries are rife with
timing problems. Ultimately, the
biggest underlying issue is one of
trust: if the client software is trusted
to manipulate state properly and it
is, by definition, under a potential
attacker’s control, security prob-
lems are the result.

One of the most obvious software-
related boundaries involves data-
bases. Transactions that involve
multiple databases are often suscepti-
ble to race conditions. Because vir-
tual worlds are distributed across
many servers, doing things like
switching from one virtual dungeon
to another or flying from one virtual
continent to another often causes a
player to be handed off from one
server to another.

This kind of switch is a normal

event in a game, and game com-
pany quality assurance (QA) has
certainly tested it with a defined test
plan—not to mention that plenty
of players have actually done the
switch many times. But here’s what
happens in many QA shops. The
test plan says something like, “in-
ventory is supposed to remain con-
stant when a player does activity47
at portal68.” Then a tester logs in,
goes to portal68, performs activ-
ity47 and checks to see if everything
is fine (such as, say, player inven-
tory). This is what’s known to soft-
ware testers as a functional test. The
problem is that this test is both bor-
ing and conventional!

You see, attackers don’t often do
what they’re supposed to do; instead,
they focus on trying things that pro-
grammers never anticipated. They
do the unexpected, sometimes with
insane results.

So here’s an idea. Instead of
gracefully walking through por-
tal68, make sure you log out of the
game while you’re doing it. Pull the
Ethernet cord out of the wall. Kill
the game client with the task man-
ager. When you’re done, log back in
and find out if anything juicy hap-
pened. Did you make it to the new
continent or are you on the original
side of portal68? What’s the state of
your character?

Let’s step through some possibil-
ities, again thinking with our black
hats on. Let’s say you end up on the
original side of the portal. What
would happen if you gave some
money to a player friend of yours
just seconds before you killed the
process, and that friend continued
through the portal like normal?
When you log back in this time,
back on the original side of por-
tal68, check your wallet. Was the
money taken from your wallet, or
did it reset itself along with your
location? If it did reset (back to the
original pre-give-some-away amount,
does your friend also have some
money on his side of the portal? If
your money has doubled, you’ve

78 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2007

Bugs involving time and state … are the

kind we can expect to see more of as

real-world software evolves to become

more like game software.

Attack Trends

found a duping bug—one of the
most coveted bugs of all time in on-
line gaming. Nothing like copying
inventory for free!

In World of Warcraft, several
bugs like this exist around entrances
to “instance dungeons.” That’s be-
cause instances are just like continents
or any other location in World of
Warcraft—they’re handled on spe-
cific servers, and as players join an in-
stance, they’re in reality a glob of data
being transferred from one “back of-
fice” server to another.

In general, a single instance
server is responsible for serving all
particular instances of a given dun-
geon. For example, all deadmines
instances run on the same deadmines
server. However, because this is a
very popular quest in the game, the
server tends to become overloaded
and laggy—an ideal condition for
trying to crowbar a race condition
out of a game.

As it turns out, botnets are very
effective ways to induce lag on the
net. Thus, botnets pose a serious se-
curity risk for online games. By
using a botnet to cause a given game
server to lag, an attacker can set
things up for a more efficient race
condition exploit.

A s an example of how state confu-
sion attacks and broken trust

models relate to future software sys-
tems, consider security issues sur-
rounding Google’s Desktop Search
program. In February 2007, the soft-
ware security firm Watchfire (since
acquired by IBM) announced an at-
tack methodology against Google
Desktop that provides evidence of the
trusted state problem in modern soft-
ware architecture (http://download.
watchfire.com/whitepapers/Over
taking-Google-Desktop.pdf).

The attack that Watchfire de-
scribes works by misusing the trust
model set up between Google’s Web
site and Google Desktop. Just as in
online games, no malicious hacking
or binary payload injection is re-

quired. The problem results from an
architectural misunderstanding in
what should trust what in the model.

These are the kinds of security
problems that result from modern
software architectures when trust
model boundaries are confused. As
long as software designers don’t ex-
plicitly consider the case of client
software misbehavior in their de-
signs, we’re in for a whole lot of hurt,
both in the virtual worlds of gaming
and in the real world.

Acknowledgments
Some material in this article is used by permis-
sion from Exploiting Online Games
(Addison-Wesley, 2007) and Building Se-
cure Software (Addison-Wesley, 2001).

References
1. G. Hoglund and G. McGraw,

Exploiting Online Games, Addison-
Wesley, 2007, pp. 67–73.

2. G. McGraw, Software Security, Addi-
son-Wesley, 2006, pp. 18–19.

Gary McGraw is Cigital’s chief technol-
ogy officer. His real-world experience is
grounded in years of consulting with
major corporation and software pro-
ducers. McGraw is the author of Exploit-
ing Online Games (Addison-Wesley,
2007), Software Security: Building
Security In (Addison-Wesley, 2006),
Exploiting Software (Addison-Wesley,
2004), Building Secure Software
(Addison-Wesley, 2001), and five other
books. McGraw has a BA in philosophy
from the University of Virginia and a
dual PhD in computer science and cog-
nitive science from Indiana University.
He is a member of the IEEE Computer
Society Board of Governors. Contact him
at gem@cigital.com.

Greg Hoglund is the founder of HBGary
and runs rootkit.com. He is coauthor of
Exploiting Online Games (Addison-
Wesley, 2007), Rootkits: Subverting the
Windows Kernel (Addison-Wesley,
2005) and Exploiting Software (Addison-
Wesley, 2004).

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 79

Interested in writing for this

department? Please contact editors

David Ahmad (drma@mac.com)

and Iván Arce (ivan.arce@

coresecurity.com) www.computer.org/pervasive

Any products your
peers should know

about? Write a review
for IEEE Pervasive

Computing, and tell us
why you were

impressed. Our New
Products department
features reviews of

the latest components,
devices, tools, and
other ubiquitous

computing gadgets on
the market.

Send your reviews and
recommendations to

pvcproducts@
computer.org

today!

Tried any
new gadgets

lately?

New Lower
Subscription Price!

$29

S&P is the premier magazine
for security professionals.
Every issue is packed with
tutorials, best practices, an
expert commentary on:

• attack trends
• cybercrime
• security policies
• mobile and

wireless issues
• digital rights

management
• and much more.

Subscribe to our
magazine today
for only $29—
our lowest price ever!

You’ll receive 6 issues of today’s
leading-edge, peer-reviewed
software development information.

Ask us how
you can get this great deal on
IEEE Security & Privacy magazine!

Visit us at www.computer.org/services/nonmem/spbnr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

